

VASCUPEDIA

Catheter Interventions for pulmonary embolism: From Directed tPA Drips to Suction Thrombectomy

Efthymios Avgerinos, MD

Associate Professor of Surgery Division of Vascular Surgery University of Pittsburgh Medical Center

PE - Increasing Incidence

- Most common preventable cause of in-hospital death
- 50% have exercise limitation at 1 year
- 4% will develop Pulmonary Hypertension at 2-3 years

PE Clinical Presentation & Risk of Death

Anticoagulation

Systemic Thrombolysis

Systemic vs Catheter Thrombolysis

"Systemic thrombolysis vs. AC is associated with a 47% mortality risk reduction ... but also high major bleeding rates (9.2% - 1.5% Stroke)"

Chatterjee et al JAMA 2014

"In intermediate risk PE us-assisted catheter directed thrombolysis is superior to heparin alone in reversing RV dilatation at 24 hours, without an increase in bleeding events"

US National Inpatient Sample

VASCUPEDIA

Kucher et al Circulation 2014

Catheter Interventions for PE

Standard Catheter Thrombolysis Ultrasound Assisted Thrombolysis

Percutaneous clot extraction

Catheter Interventions for PE

Standard Catheter Thrombolysis

- Multisidehole catheter introduced within the clot
- 12-24 hour tpa infusion 0.5-2mg/hour
- tPA penetrates & "softens" clot particles

Ultrasound Assisted Thrombolysis (EKOS)

Technically similar to catheter directed dripping

Fibrin Separation

Acoustic Pulse Lysis can in-Vitro increase thrombus clearance by 50%

Active Drug Delivery

Ultrasound Assisted Thrombolysis (EKOS)

- Technically similar to standard catheter dripping
- Ultrasound may reduce dripping time & tPA dose (?)
- Most literature supporting it FDA approved
 - ULTIMA RCT
 - SEATTLE II Registry
 - Multiple small series
 - OPTALYSE PE
- No evidence of superiority over standard catheters

Ultrasound Assisted Thrombolysis (EKOS)

- Technically similar to standard catheter dripping
- Ultrasound may reduce dripping time & tPA dose (?)
- Most literature supporting it FDA approved

Design and rationale of a randomized trial comparing standard versus ultrasound-assisted thrombolysis for submassive pulmonary embolism

Efthymios D. Avgerinos, MD,^a Abhisekh Mohapatra, MD,^a Belinda Rivera-Lebron, MD,^b Catalin Toma, MD,^c Christopher Kabrhel, MD,^d Larry Fish, PhD,^a Joan Lacomis, MD,^e Iclal Ocak, MD,^e and Rabih A. Chaer, MD, MSc,^a in collaboration with the PERT Consortium, *Pittsburgh, Pa; and Boston, Mass*

J Vasc Surg: Venous and Lym Dis 2018;6:126-32.

Interventions for PE – Thrombolysis Ultrasound Assisted Thrombolysis (EKOS)

Recommended Treatment Time: 2, 4, 6, 12 Hours

Interventions for PE - Clot Extraction

Thrombectomy Devices (no need for lytics)

- Small bore Aspiration Catheters/Systems
- Large bore Aspiration Catheters/Systems

Interventions for PE - Clot Extraction

Thrombectomy Devices

- Small bore Aspiration Catheters/Systems
 - Any catheter
 - Pronto Catheter (Vascular Solutions)
 - Aspire (Control Medical Technology)

Manual Fragmentation and Aspiration

Pronto Catheter

Courtesy: E. Avgerinos Univ. of Pittsburgh VASCUPEDIA

Thrombectomy Devices

- Large bore Aspiration Catheters
- (Rapid debulking of proximal thrombus)
 - Trerotola (Teleflex)
 - Angiojet (Boston Scientific)
 - Angiovac (Angiodynamics)
 - Indigo (Penumbra Inc)
 - Flowtriever (Inari medical)

Penumbra

Thrombectomy Devices

• Angiovac

Courtesy: R. Chaer Univ. of Pittsburgh VASCUPEDIA

Thrombectomy Devices

Indigo Penumbra

Thrombectomy Devices

Indigo Penumbra

Penumbra (P) == EXTRACT-PE

Vol. 1 January 2018

VASCUPEDIA

Welcome! A message from Dr. Akhilesh Sista, National Principal Investigator:

Dear EXTRACT-PE Clinical Site,

Welcome to this exciting trial: "A Prospective, Multicenter Trial to Evaluate the Safety and Efficacy of the Indigo[®] Aspiration System in Acute Submassive Pulmonary Embolism." It is my honor to lead this trial along with an accomplished Steering Committee: Drs. Jim Benenati, Vic Tapson, and Jim Horowitz. We are also fortunate to have esteemed PE experts on both the Clinical Events and Data Safety Monitoring Board (DSMB) Committees to oversee the safety and efficacy of the trial.

We have individually seen how the Indigo Aspiration System has can remove thrombus; it is now time to evaluate it in a prospective and rigorous fashion. The Indigo Aspiration System

has the potential to remove thrombus with no or minimal thrombolytic drug use, a feature that could improve options for patients.

Thank you for participating in this important trial, and for your hard work in getting your sites up and running. Please feel free to email or call me with any study related questions. My cell is 410-908-1406, and my email is <u>Akhilesh.Sista@nyumc.org</u>. I look forward to working with you.

Steering Committee Members

- James Benenati, MD, FSIR
 - Medical Director, Noninvasive Vascular Laboratory Program Director, Vascular/Interventional Radiology Fellowship Baptist Cardiac & Vascular Institute Baptist Hospital of Miami
- James Horowitz, MD, FACC Clinical Assistant Professor, Department of Medicine NYU Critical Care Associates
- Victor Tapson, MD
 Director of Pulmonary and Critical Care Medicine

Subject Enrollment

Thrombectomy Devices

• Flowtriever Inari

Courtesy: C. Toma Univ. of Pittsburgh VASCUPEDIA

FLARE Enrollment by Investigator

Investigator	Site	Total
Tom Tu	Baptist Health	27
Chris Adams	Charleston Area MC	27
Wissam Jaber	Emory University	9
Rohit Bhatheja	Florida Hospital	8
Mitch Silver	OhioHealth	8
Sameer Khandhar	Penn Presbyterian MC	6
Rohit Amin	PRC / Sacred Heart	5
Mitch Weinberg	North Shore / Lenox Hill	3
Tod Engelhardt	East Jefferson GH	2
Eric Peden	Houston Methodist	2
Robert Maholic	UPMĆ Hamot	2
David Holmes	East Alabama MC	1
Scott Lilly	OSU/Wexner MC	1
Catalin Toma	UPMC Presbyterian	1
Hussam Hamdalla	Ephraim McDowell	1
Glenn Hoots	Tampa General	1
Victor Tapson	Cedars-Sinai	1
Monica Hunter	CRA / Birmingham Heart	1
TOTAL ENROLLED		106

Safety of Catheter Interventions

	Trial	Type of Intervention	Pts	Major Bleed	ICH
	Kuo et. al 2009	Various	594	~3.2%	0.1%
RCT	ULTIMA -2014	EKOS (Lysis)	30	0%	0%
	PERFECT 2015	sCDT EKOS (Lysis)	101	0%	0%
	SEATTLE II 2015	EKOS (Lysis)	150	10%	0%
	NIS Data 2015	Various	352	~3.7%	0.3%

Major Complications EXIST

Coronary Sinus Perforation Tricuspid Rupture

Journal of Vascular Surgery Venous and Lymphatic Disorders™

Avgerinos et al, J Vasc Surg 2018 in press

- Metaanalysis of 20 Studies of Catheter Thrombolysis (2009-2017)
- 1,168 patients
- Massive PE
 - 8% Mortality
 - 6.7% Major Bleeding
- Submassive PE
 - <1% Mortality
 - 1.4% Major Bleeding

Major Bleeding (by PE Severity)

Study	ES (95% CI)	% Weight
High risk PE		
Lin 2009	• 0.120 (0.042, 0.300)	3.99
Engelberger 2013	0.071 (0.013, 0.315)	2.76
Kennedy 2013	0.083 (0.015, 0.354)	2.47
Dumantepe 2014	0.000 (0.000, 0.434)	1.27
Quintana 2014	0.000 (0.000, 0.658)	0.62
Kuo 2015 🔶 🗕	- 0.000 (0.000, 0.121)	4.25
Nykamp 2015	0.000 (0.000, 0.228)	2.62
Piazza 2015	0.226 (0.114, 0.398)	4.49
Yoo 2016	0.083 (0.015, 0.354)	2.47
Avgerinos 2017	• 0.313 (0.142, 0.556)	3.02
Subtotal (I ² = 49.399%, p = 0.038)	> 0.067 (0.010, 0.153)	27.95
Intermediate risk PE		
Engelberger 2013	- 0.026 (0.005, 0.135)	4.97
Kennedy 2013	0.000 (0.000, 0.074)	5.53
Dumantepe 2014	0.000 (0.000, 0.215)	2.76
Gaba 2014	0.053 (0.009, 0.246)	3.37
Kucher 2014	• 0.000 (0.000, 0.114)	4.41
Quintana 2014	0.000 (0.000, 0.324)	1.83
Bagla 2015 🛛 😽 🔶	0.044 (0.012, 0.148)	5.38
Kuo 2015 🔶	0.000 (0.000, 0.051)	6.44
Mccabe 2015	- 0.038 (0.010, 0.128)	5.76
Nykamp 2015	0.000 (0.000, 0.107)	4.56
Piazza 2015	- 0.067 (0.034, 0.127)	7.42
Ozmen 2016	0.000 (0.000, 0.278)	2.16
Yoo 2016	0.000 (0.000, 0.194)	3.02
Avgerinos 2017 🔶	0.048 (0.026, 0.089)	8.10
Fuller 2017	- 0.000 (0.000, 0.125)	4.16
Ozcinar 2017 🔹 🖝 🚽	0.000 (0.000, 0.278)	2.16
Subtotal (I^2 = 10.941%, p = 0.328)	0.014 (0.003, 0.028)	72.05
Heterogeneity between groups: p = 0.011		
Overall (I^2 = 47.323%, p = 0.004);	0.018 (0.003, 0.040)	100.00
0	.2 .4 .6 .8	

UPEDIA

 High Risk
 Intermediate - High
 Intermediate - Low
 Low Risk

 Assess Bleed Risk

Take Home Messages

- Catheter Interventions for PE are here to stay
 - Catheter Lysis vs Catheter Thrombectomy are complimentary
- Faster Clot removal & RV function recovery
- Prevention of RV failure / decompensation
- Prevention of Pulmonary Hypertension (?)
- They are not complication-free procedures but complications are less than those of systemic lysis
- Careful patient selection in high-volume centers with appropriate expertise is essential till larger studies are available.