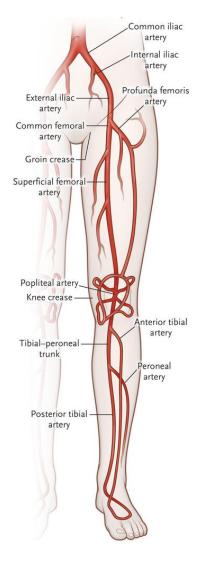

Overview DCB treatment in BTK arteries

VASCUPEDIA

Marc Bosiers, MD


DCB proven to work in SFA

Not all lesions are the same

ABOVE THE KNEE

- Mixed morphology (multiple plaque types & thrombus)
- Medium to large vessels (4-9mm)

BELOW THE KNEE

- Lesions more commonly calcified
- Tortuous, challenging anatomy
- Small vessels (1.5 3.5mm)

VIVA 2011 survey – 100 physicians surveyed. Bishop et al. Ann Vasc Surg. 2008;22:799-805

BTK revascularization challenges

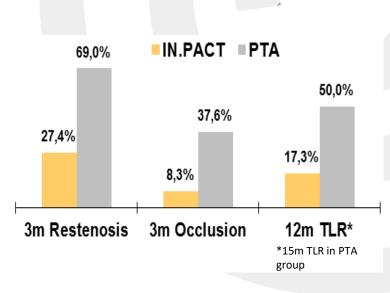
- Long, complex, often calcified nature of lesions
- Often associated with multilevel disease, thus success inflow- and outflow-dependent
- High restenosis rate
- Limb salvage poorly correlated to primary patency
- Literature landscape dominated by small series and case studies, with limited level I evidence

Leipzig Registry (IN.PACT BTK) – DCB

• 104 patients – single arm study DCB (compare to historical PTA data)

VASCUPEDIA

• Primary Endpoint: Angiographic Binary Restenosis @3-month

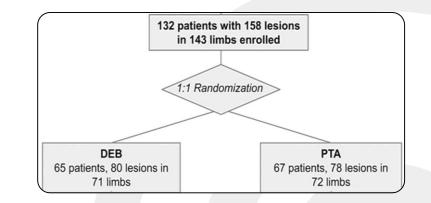

Inclusion criteria:

- $\checkmark\,$ CLI or severe claudication
- ✓ Stenosis >70% or occlusion of the BTK arteries
- ✓ LL ≥80mm

Leipzig Registry – DCB - Results

	BTK RCTs/registries	IN.PACT BTKregistry – LeipzigSchmidt et al. 2011[46]
	DCB system	IN.PACT™
		DCB
	Number of patients	104
	Lesion lengths (mm)	176 ± 88
	De novo lesion type (%)	65
	Total occlusions (%)	62
	Calcified lesions (%)	
	Severe calcification (%)	
	Diabetic patients (%)	71
	PAD CLI patients (%)	82

FU ≥ 12 months	
LLL	
TLR (%)	17
PP (%)	
Restenosis rate (%)	
Improvement in clinicaloutcome/RU (%)	Yes
Distal embolization (%)	
Improvement in ABI	
Major amputationrate (%)	


Schmidt A. et al., J	ACC58:11:1105-9	(2011))
----------------------	-----------------	--------	---

DEBATE-BTK – DCB vs PTA

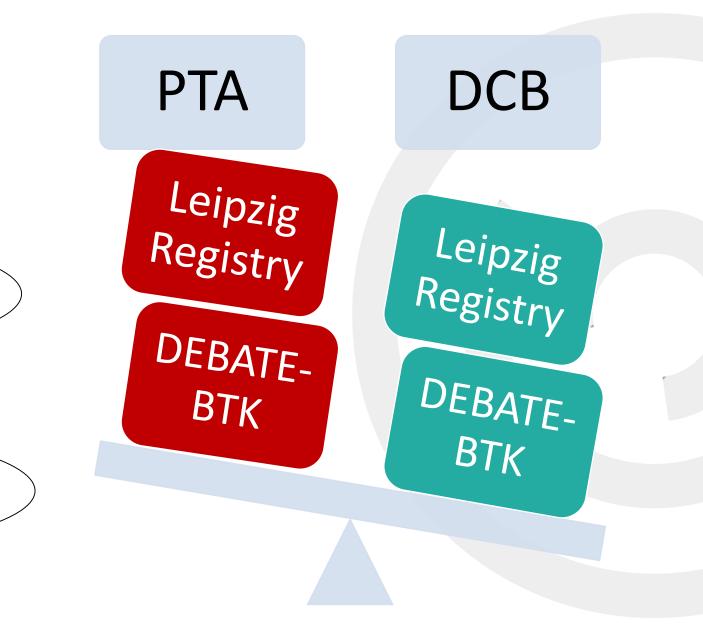
- 132 patients RCT : IN.PACT Amphirion vs PTA
- Primary Endpoint: Angiographic binary restenosis @12M

Inclusion criteria:

- ✓ CLI & diabetic patients
- ✓ Stenosis >50% or occlusion of the BTK arteries
- $\checkmark\,$ LL not specified

DEBATE-BTK study – DCB vs PTA - Results

BTK RCTs/registries al.2013 [43			istro et
DCB system	IN.PACT™Amphirion		
	DCB	РТА	p- value
Number of patients	65	67	
Lesion lengths (mm)	129 ±83	131± 79	
De novo lesion type (%)	100	100	
Total occlusions (%)	77	82	
Calcified lesions (%)			
Severe calcification (%)			
Diabetic patients (%)	100	100	
PAD CLI patients (%)	100	100	


FU ≥ 12 months			
LLL			
TLR (%)	18	43	0.002
PP (%)			
Restenosis rate (%)	27	74	<0.001
Improvement in clinicaloutcome/RU (%)			0.06
Distal embolization (%)			
Improvement in ABI	Yes		<0.001
Major amputationrate (%)	0	1.5	n.s.

Early DCB-BTK evidence showed high promise to reduce restenosis and reintervention rates vs standard PTA

> No major differences in hard clinical outcomes across all studies between any DCB and control arm.

However, there is **no consistence** between trials and registries on hard clinical endpoints

BIOLUX P-II study – DCB vs PTA

- 72 patients RCT: Passeo-18 LUX vs Passeo-18
- Primary Endpoint:
 6-month Target Lesion Patency at 6-months

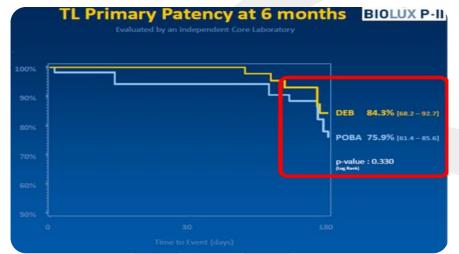
Inclusion criteria:

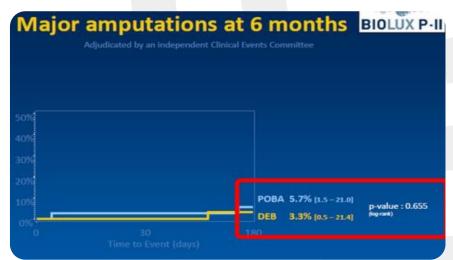
- ✓ RCC not specified
- ✓ Stenosis >70% or occlusion of the BTK arteries

VASCUPEDIA

✓ LL ≥30mm

M. Brodmann – Biolux P-II study - 2015


BIOLUX P-II study – DCB vs PTA - Results


BTK RCTs/registries	PIIBro [45]	dmann2	2015	
DCB system	Passe	Passeo-18 Lux		
	DCB	ΡΤΑ	p- value	
Number of patients	36	36		
Lesion lengths (mm)	113 ±88	115 ±87		
De novo lesion type (%)				
Total occlusions (%)				
Calcified lesions (%)				
Severe calcification (%)				
Diabetic patients (%)	61	72		
PAD CLI patients (%)				

BIOLUX-

FU 6 months			
LLL (mm)			
TLR (%)			
PP (%)	84.3	75.9	n.s.
Restenosis rate (%)			
Improvement in clinical	59	47	n.s.
outcome/RU			
Improvement in ABI			
Major amputationrate (%)	3.3	5.7	n.s.

VASCUPEDIA

M. Brodmann – Biolux P-II study - 2015

IN.PACT DEEP study – DCB vs PTA

- 358 patients RCT (2:1) IN.PACT Amphirion (239) vs PTA (119)
- Primary Endpoint: Late Lumen Loss @ 12M Clinically driven TLR @ 12M

Inclusion criteria:

- ✓ CLI patients (RCC 4,5,6)
- ✓ Stenosis >70% or occlusion of the BTK arteries

VASCUPEDIA

✓ LL ≤100mm

T. Zeller – LINC 2014 & Zeller et al. JACC 2014

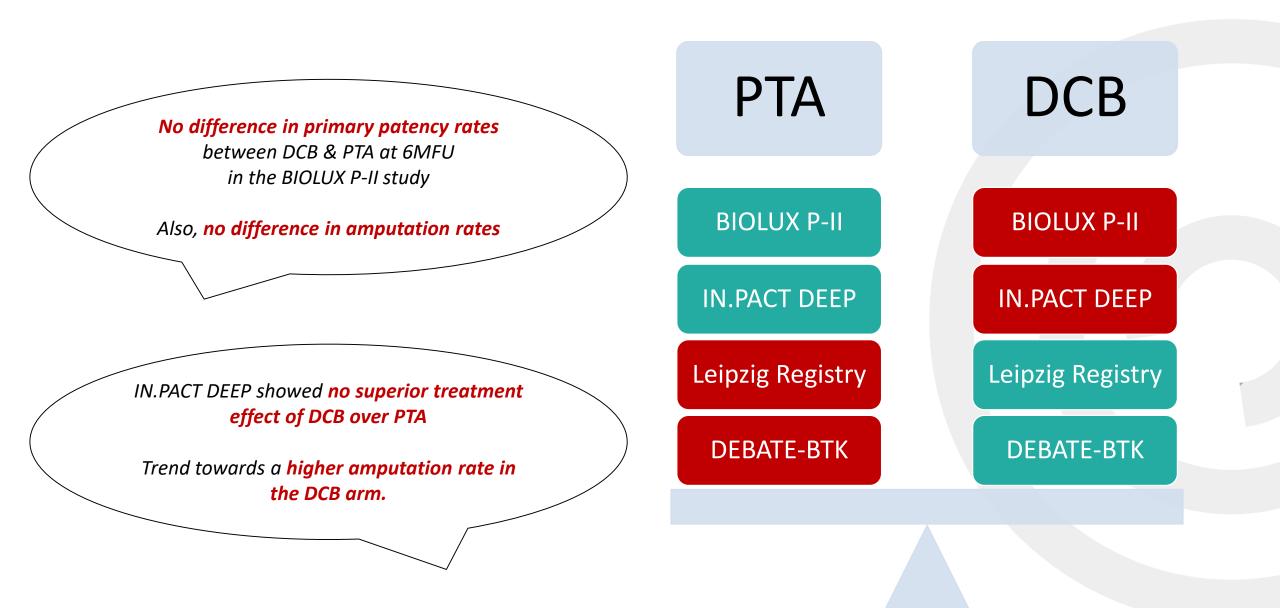
IN.PACT DEEP study – DCB vs PTA - Results

BTK RCTs/registries	IN.PACT DEEPZeller et al. 2014 [44]		
DCB system	IN.PAC	T™ Amp	hirion
	DCB	ΡΤΑ	p- value
Number of patients	239	119	
Lesion lengths (mm)	101 ±91	129 ±95	0.002
De novo lesion type (%)	93	96	
Total occlusions (%)	39	46	
Calcified lesions (%)	75	78	
Severe calcification (%)	14	11	
Diabetic patients (%)	76	69	
PAD CLI patients (%)	100	99	

FU 6 months

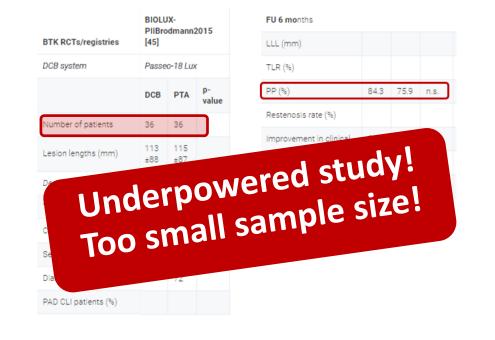
Major amputationrate (%)	8.8	3.6	0.080

FU ≥ 12 months


LLL	0.6 ±0.8	0.6 ±0.8	n.s.
TLR (%)	9.2	13.1	n.s.
PP (%)			
Restenosis rate (%)	41	36	n.s.
Improvement in clinicaloutcome/RU (%)			
Distal embolization (%)	2.8	0.6	n.s.
Improvement in ABI			
Major amputationrate (%)	8.8	3.6	0.08

Failure to meet Primary Efficacy Endpoint

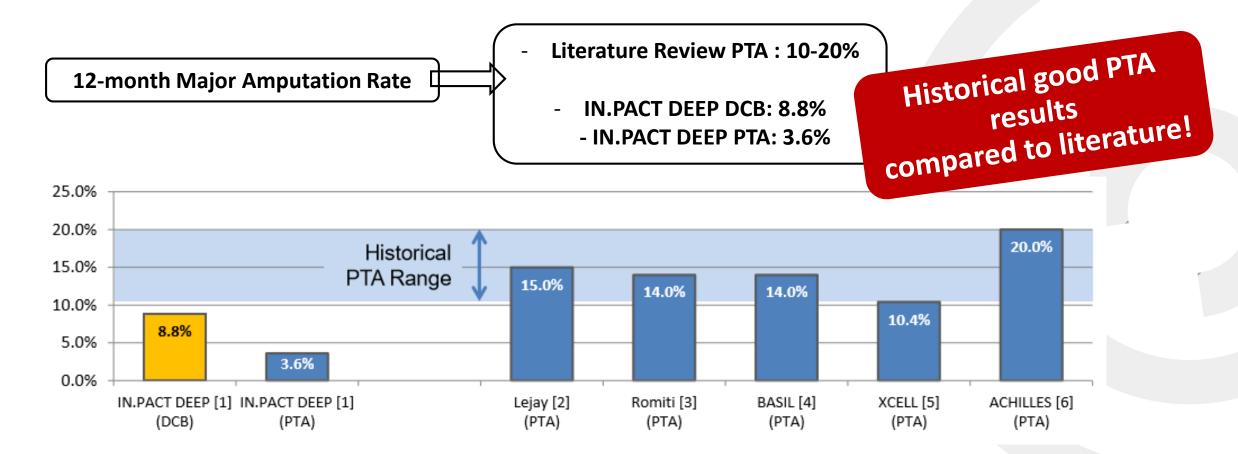
Trend towards higher Major Amputation Rate in DCB arm


VASCUPEDIA

IN.PACT DEEP study – IN.PACT Amphirion vs PTA

What was the problem with BIOLUX P-II?

BIOLUX P-II study – DCB vs PTA - Results



VASCUPEDIA

VASCUPEDIA

BIOLUX P-II study – Passeo-18 LUX vs Passeo-18

What was the problem with IN.PACT DEEP?

- 1. Zeller T. et al., JACC 64:1568-76 (2014)
- 2. Lejay A. et al. Acta Chir Belg 110:684-93 (2010)
- 3. Romiti M. et al., J Vasc Surg 47:975-81 (2008)

4. Adam D. et al., Lancet 366:1925-34 (2005)

5. Rocha-Singh K. et al., Catheter Cardiovasc Interv 80:1042-51 (2012)

VASCUPEDIA

6. Scheinert D. et al., JACC 60:2290-5 (2012)

What was the problem with IN.PACT DEEP?

	DCB	ΡΤΑ	Р
12-month LLL (mm)	0.61 <u>+</u> 0.78	0.62 <u>+</u> 0.78	0.950

	"Old" IN.PACT Amphirion	"New" (Next Gen) IN.PACT Pacific/Admiral
Coating Method	Manually-coated on folded balloon	Automatically-coated on inflated balloon
Balloon Material	High surface energy	Low surface energy

Animal studies confirmed balloon material can impact drug delivery:

- New design delivered more drug to vessel \rightarrow Folds protect the drug
- New design had less residual drug on balloon \rightarrow Better drug release

Lack of drug effect by older technology?

Green denotes example of coating on folded balloon

Red denotes incremental surface area coated on inflated balloon

What was the problem with IN.PACT DEEP?

Multiple factors may have contributed:

- Potentially underpowered study design (2:1 randomization)
- Poor compliance to angiographic follow-up
- PTA group outcomes not consistent with historical results
- Procedural differences
- Lack of pre-specified assessment of wound-related artery by core labs
- Insufficient drug delivery to the lesion?
- No dedicated wound care schedule

Need for new studies! Upcoming / Ongoing

Lutonix BTK Registry

Luminor BTK Registry

BIOLUX P-III

Illumenate BTK

IN.PACT BTK

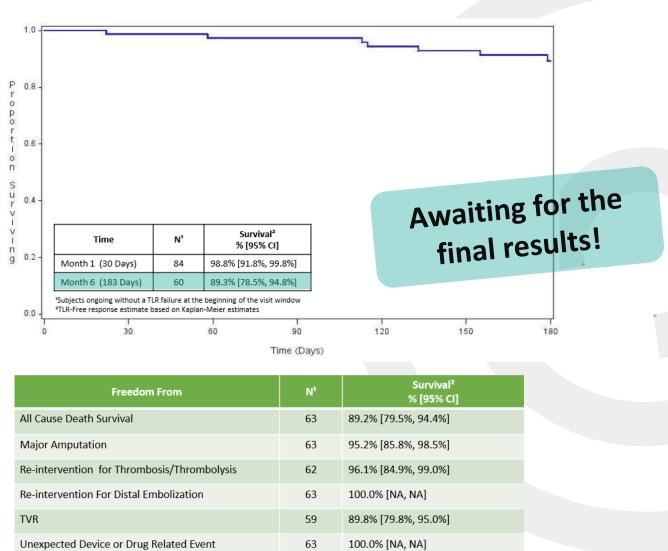
Global Lutonix DCB BTK registry – DCB

- +/- 500 patients single arm study Lutonix DCB
- Primary Endpoint: Freedom from clinically driven TLR @ 6M Limb Salvage Rate @ 6M

Inclusion criteria:

- ✓ RCC 3,4,5
- ✓ Stenosis >70% or occlusion of the BTK arteries

VASCUPEDIA


✓ LL not specified

Dr. M. Lichenberg– LINC 2018 – Initial Look at the Global Lutonix DCB BTK Registry Study 6M outcomes

Global Lutonix DCB BTK registry – DCB – preliminary Results

- MLL : 102 ± 79.5mm
- F-TLR @6M : 89.30%

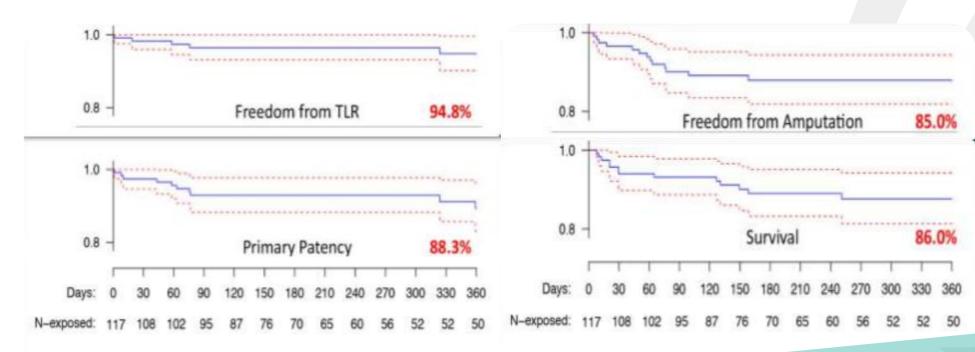
Description	BTK Study Registry (N=85)
Lesion Location ¹ Popliteal Tibioperoneal Trunk Anterior Tibial Posterior Tibial	9.4% (8/85) 27.1% (23/85) 34.1% (29/85) 24.7% (21/85)
Peroneal	25.9% (22/85)
Total Target Length (mm), Mean ± SD (n)	102 ± 79.5 (85)
Average RVD (mm), Mean ± SD (n)	2.7 ± 0.57 (85)
(min, max)	(2.0, 4.0)
Calcification, % (n/N)	63.8% (51/80)
Severe Calcification, % (n/N)	10.5% (8/76)

VASCUPEDIA

Global Lutonix BTK registry

Dr. M. Lichenberg-LINC 2018 - Initial Look at the Global Lutonix DCB BTK Registry Study 6M outcomes

Luminor Registry : BTK Cohort


- Preliminary 98 patients 116 lesions
- All comers study in infra-inguinal arteries BTK cohort
- Primary Endpoint: Primary Patency Rate @ 12M

Inclusion criteria:

- ✓ RCC 2,3,4,5
- ✓ Stenosis >50% or occlusion (of the tibial arteries)
- ✓ LL 20 to 200mm

Luminor Registry : BTK Subgroup – Preliminary Results

• MLL : 77.90mm

Awaiting for the final results!

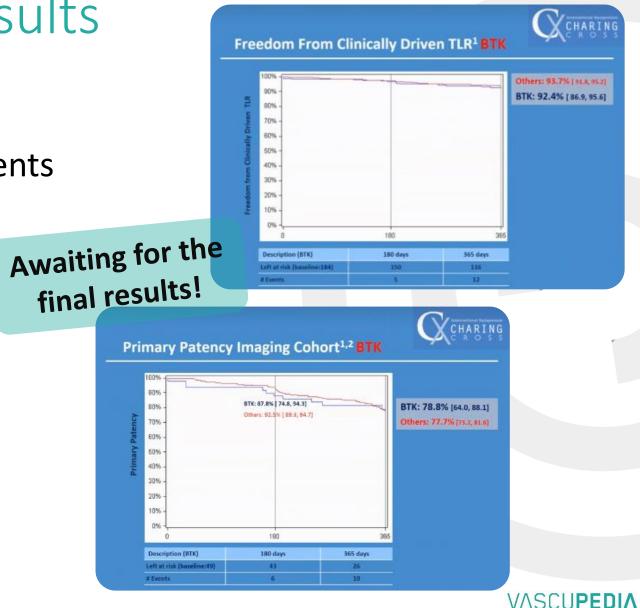
BIOLUX P-III : DCB

 882 patients total cohort -> 150 pts BTK cohort All comers study in infra-inguinal arteries with BTK cohort

• Primary Endpoint: Freedom from clinically driven TLR @ 12M

Inclusion criteria:

- ✓ RCC not specified
- ✓ Stenosis not specified
- ✓ LL not specified


BIOLUX P-III : DCB - Results

MLL : 79 mm 62.70% diabetics / 76.70% CLI patients

f-TLR @ 12M : 92.40%

PP @ 12M : 78.80%

f-major AMP @ 12M : 92.20%

ILLUMENATE BTK Post Market Study (BTK PMS)

 +/- 75 patients – single arm – Stellarex DCB All comers study in infra-inguinal arteries with BTK cohort

 Primary Endpoint: Composite Patency (flow/no flow) + Limb Salvage @6M

Inclusion criteria:

✓ RCC 3,4,5
✓ Stenosis not specified
✓ LL not specified

IN.PACT BTK – DCB vs PTA

• 60 patients – RCT– IN.PACT Admiral DCB vs PTA

• Primary Endpoint: LLL @ 9M

Inclusion criteria:

✓ RCC 4,5
✓ Stenosis not specified
✓ LL not specified

Conclusion

- DCB concept for SFA can not be transferred into the challenging BTK region
- Initial promising results with DCB in the BTK area (DEBATE-BTK & IN.PACT BTK) could not be duplicated into the IN.PACT DEEP & BIOLUX P-II studies
- Existing new enthusiasm waits for the results of ongoing studies: Lutonix BTK Registry, Luminor BTK Registry, Biolux P-III, Illumenate BTK-PMS, IN.PACT BTK,...
- Still remains the question in BTK / CLI treatment: What are the right endpoints , correct strategy, the most efficient follow-up and the absolute need for multi-disciplinary approach.