Features Gore's CBAS Heparin Surface, the proven heparin bonding technology for lasting thromboresistance, used in many of Gore's interventional and vascular surgery products. End-point covalent bonding keeps heparin anchored to the graft surface, while the bioactive site remains free to interact with the blood to help prevent clotting.

References

GORE® PROPATEN® Vascular Graft
A leading prosthetic vascular graft for lower extremity revascularization, specifically designed to reduce the risk of acute graft thrombotic failure. With more than a decade of strong performance that includes improving outcomes and reducing interventions, this longstanding bypass graft helps deliver both proven clinical and economic value for patients and hospitals.

See the proof at goremedical.com/propaten

** Overall weighted average primary patency is based on data from 15 peer-reviewed publications meeting pre-determined inclusion criteria. Visit propatenperformance.com to see inclusion criteria, explore the data, and see publications.

** Data not reported.

Study size (N) reflects the initial cohort size of the study.
Proven patency

By substantially reducing acute graft thrombosis within hours after implantation, the CBAS Heparin Surface on the GORE® PROPATEN® Vascular Graft provides clinical benefits that standard ePTFE grafts do not.

Fewer occlusions

50% reduction in risk of graft occlusion compared to standard ePTFE in critical limb ischemia (CLI) patients.

Improved patient outcomes

Higher primary and secondary patency, and higher limb salvage for below-knee bypass compared to standard ePTFE from 1–3 years.

Improved clinical outcomes

<table>
<thead>
<tr>
<th>Primary patency</th>
<th>Secondary patency</th>
<th>Limb salvage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>2 years</td>
<td>3 years</td>
</tr>
<tr>
<td>Years post implantation</td>
<td>GORE® PROPATEN® Vascular Graft</td>
<td>Standard ePTFE</td>
</tr>
<tr>
<td>75%</td>
<td>73%</td>
<td>65%</td>
</tr>
<tr>
<td>52%</td>
<td>61%</td>
<td>40%</td>
</tr>
<tr>
<td>40%</td>
<td>79%</td>
<td>56%</td>
</tr>
<tr>
<td>34%</td>
<td>63%</td>
<td>34%</td>
</tr>
</tbody>
</table>

Measurable value

The GORE® PROPATEN® Vascular Graft is the leading prosthetic bypass graft solution for proven clinical performance and low cumulative cost of care.

Comparison of average cumulative treatment costs per patient years 1 to 3 post index below-knee bypass

<table>
<thead>
<tr>
<th>GORE® PROPATEN® Vascular Graft</th>
<th>Standard ePTFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>$12,462 saved</td>
</tr>
<tr>
<td>Year 1+2</td>
<td>$19,770 saved</td>
</tr>
<tr>
<td>Year 1+2+3</td>
<td>$22,885 saved</td>
</tr>
</tbody>
</table>

Comparison of below-knee cumulative amputation-free survival

<table>
<thead>
<tr>
<th>GORE® PROPATEN® Vascular Graft</th>
<th>Standard ePTFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>71% 62% 53%</td>
</tr>
<tr>
<td>Year 1+2</td>
<td>71% 64% 55%</td>
</tr>
<tr>
<td>Year 1+2+3</td>
<td>71% 65% 55%</td>
</tr>
</tbody>
</table>

Amputation-free survival (avoided loss of limb or life) is the average reported mortality rate for standard ePTFE and the average reported amputation rates for standard ePTFE and GORE® PROPATEN® Vascular Graft.
Lasting thromboresistance. Proven technology.*

CBAS Heparin Surface

The CBAS Heparin Surface of the GORE® PROPATEN® Vascular Graft consists of a proprietary covalent end-point bond that preserves the active site, thus retaining heparin’s anticoagulant activity.

Proven heparin availability

Performance-ready heparin active site.6

Proven heparin bioactivity

Unmatched, persistent ability to take up antithrombin.1, 5

Proven lasting thromboresistance

Improved surface hemocompatibility resulting from heparin availability and bioactivity.1, 4–7

The CBAS Heparin Surface of a 3 mm diameter GORE® PROPATEN® Vascular Graft (top) remains free of thrombus, while the 3 mm diameter control ePTFE graft (bottom) is covered with thrombus in an acute two-hour in vivo canine carotid artery interposition model.

In vivo canine carotid artery interposition model

8 Years (Explant after 2,939 days)

Heparin bioactivity detected above the level required for thromboresistance in a 8-year human explant. No adherent thrombus was found.

- Femoral to posterior tibial bypass with polyester Linton patch.
- Distal anastomosis occluded.

The anticoagulant function of heparin is dependent on the bioavailability of an active site within the molecule. Some methods of covalent heparin bonding damage and/or obstruct the active site, and hence destroy heparin’s anticoagulant activity.

Proprietary covalent end-point bonding

Covalent end-point bonding allows the heparin to extend into the bloodstream, keeping the active site bioavailable, unlike a non-permanent bond that can be washed away in the bloodstream.

Mechanism of action

A. Bioactive site of the heparin molecule enables antithrombin to bind thrombin.
B. When antithrombin binds to thrombin, a neutral AT-T complex is formed.
C. Neutral AT-T complex detaches from the heparin molecule. Active site becomes available to again bind antithrombin.

Visit goremedical.com/cbas to learn more

"Sustained heparin bioactivity"