

Hemodynamic and mechanical interpretation of the clinical performance of abdominal aortic endografts: principles and considerations

VASCUPEDIA

Dr. Efstratios Georgakarakos Assistant Professor of Vascular Surgery University Hospital of Alexandroupolis Democritus University of Thrace, Greece

Hemodynamic and mechanical interpretation of the clinical performance of abdominal aortic endografts: principles and considerations

- Disclosures: none
- Conflict of interest: none

Endovascular-vs. open repair: is the battle over?

Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years

J. T. Powell¹, M. J. Sweeting², P. Ulug¹, J. D. Blankensteijn³, F. A. Lederle⁴, J.-P. Becquemin⁵ and R. M. Greenhalgh¹, on behalf of the EVAR-1, DREAM, OVER and ACE Trialists

Common endograft designs when treating AAA

The loss

Bifurcated

Aonto-Un Illiac

Common endograft designs when treating AAA

Most commercially available endografts carry a Nitinol skeleton on Dacron or PTFE fabric with various fixation modes

Radiol med (2017) 122:309-318

Table 1 Presentation of the market-available endografts used in the treatment of abdominal aortic aneurysms

310

Endograft type	Device structure	Fabric and skeleton	Fixation mode
Excluder C3 (Gore associates)	Modular-bifurcated	ePTFE and nitinol	Active infrarenal fixation with anchors
Endurant II (Medtronic)	Modular-bifurcated	Woven polyester and nitinol	Active suprarenal fixation with pins
Endurant IIs (Medtronic)	Modular-three pieces	Woven polyester and nitinol	Active suprarenal fixation with pins
Zenith LP (Cook Medical)	Modular-bifurcated	Woven polyester and nitinol	Active suprarenal fixation with barbs
Zenith Flex (Cook Medical)	Modular-bifurcated	Woven polyester and nitinol	Active suprarenal fixation with barbs
Treovance (Bolton)	Modular-three pieces	Woven polyester and nitinol	Double active fixation (suprarenal and infrarenal)
Incraft (Cordis)	Modular-three pieces	Woven polyester and nitinol	Suprarenal with barbs
Anaconda (Vascutek)	Modular-three pieces	Woven polyester and nitinol	Active infrarenal fixation with hooks
E-tegra (Jotec)	Modular-bifurcated	Woven polyester and nitinol	Active suprarenal with anchors
Aorfix (Lombard)	Modular-bifurcated	Woven polyester and nitinol rings	Helical circular nitinol frame and hooks
AFX (Endologix)	Unibody	ePTFE and cobalt chromium alloy	Anatomical fixation onto the aortic bifurcation
Ovation (Endologix)	Modular-three pieces	PTFE and nitinol	Active suprarenal fixation with anchors and seal through polymer- inflatable rings
Nellix (Endologix)	Two balloon-expandable stents surrounded by polymer-filled endobags	PTFE and cobalt chromium alloy	Anatomical sealing in the AAA sac

Schoretsanitis et al, Radiol Med 2017; 122:306-318

Common endograft designs when treating AAA

Table 2 Current instructions-for-use (IFU) for the commercially available aortic stent-grafts used for the treatment of abdominal aortic aneurysms

	Neck length (mm)	Neck diameter (mm)	Neck angulation (°)	Distal fixation length (mm)	Iliac diameter (mm)	Main body sheath size (Fr)	Limb sheath size (Fr)
Excluder C3	≥15	19-32	≤60	≥10	8-25	16-18	12-15
Endurant II	≥10	19–32	≤60 if neck length 10–14 mm <75° if neck length >15 mm	≥15	8–25	18–20	14–16
Zenith Flex	≥15	18-32	Infrarenal ≤60; suprarenal ≤45	≥10	7.5–20	18-20 (ID)	14-16 (ID)
Aorfix	≥20	19-29	≤90	≥20	8.5-19	22	20
AFX	≥15	18-32	≤60	≥15	10-23	17	9
Anaconda	≥15	16-31 (17.5-31 for Anaconda One-Lok)	≤90	≥20	8.5–21	20–22	18
Treovance	≥10	17–32 with neck length ≥10 17–30 with neck length ≥15	≤60 if neck length 10–14 mm <75 if neck length >15	≥10 with diam- eter 8–13 ≥15 with diam- eter 14–20	8–13 if iliac length ≥10 14–20 if neck length ≥15	18–19	15–16
E-tegra	≥15	19-32	≤75	≥15	8-25	18	16
Incraft	≥15	20-27	≤60	≥10	9-18	14	12.5
Ovation	-	16–30 at 13 mm IR ^a	≤60 if neck ≥10 mm ≤45 if neck <10 mm	≥10	8–25	14	14
Nellix	≥10	18-32	<60	?	8-35	17	17

Schoretsanitis et al, Radiol Med 2017; 122:306-318

EVAR: simple hydraulics? Not exactly!!

The short-, med- and long tern performance of endografts depends on the mechanical properties of endografts and aorta (aneurysm)

Hemodynamic and mechanical interpretation of the clinical performance of abdominal aortic endografts: principles and considerations

AIM OF THIS PRESENTATION IS TO DESCRIBE AND COMPREHEND THE HEMODYNAMIC PHENOMENA TAKING PLACE AFTER ENDOGRAFT IMPLANTATION AND GET FAMILIAR WITH BASIC HEMODYNAMIC AND MECHANICAL TERMS

Introduction to basic principles

Fig 1. Forces acting on the aortic wall.

Dua & Dalman, Vascul Pharmacol. 2010; 53:11-21

Introduction to basic principles

The pressure forces act perpendicularly on the wall surface. Shear forces are tangential to the surface as a result of flow and are responsible for intimal hyperplasia, stenosis and thrombus formation

Figure 18. The pressure forces on the endograft bifurcation area (peak sys

Figure 19. The tangential forces on the endograft bifurcation area (peak systolic phase).

Introduction to basic principles

✓ The term "stress,, refers to the energy load on a given structure
 ✓ Under any pressure, produces strain and is counteracted by the mechanical strength of the structure

Georgakarakos et al, Int Angiol, 2009; 325-33

von Mises stress

Depends on:

- 1. Geometry
- 2. Mechanical properties

- 3. Systolic pressure
- 4. Wall thickness

Hemodynamic and mechanical interpretation of the clinical performance of abdominal aortic endografts: principles and considerations

PERFORMANCE OF ENDOGRAFS]
REMODELLING	
✓ MECHANICAL PROPERTIES	
✓ FORCES	
✓STRESSES	
✓GEOMETRY	

Remodelling: decrease of angulation of infarenal neck AND iliacs

J ENDOVASC THER 2001;8:34–38

Table 1	
Angular Changes in 22 Stent-Grafts Over a 2-year Observation F	Period

	Preop	Postop	3 Months	6 Months	12 Months	18 Months	24 Months
Proximal Neck							
AP	2.32 ± 8.03	0	0.5 ± 8.62	0.79 ± 6.56	2.56 ± 8.2	-0.13 ± 7.97	0.71 ± 10.24
Lateral	-0.89 ± 10.99	0	1.38 ± 5.58	0.26 ± 3.29	1.80 ± 5.62	5.42 ± 8.32	4.00 ± 7.73
Midgraft							
AP	3.27 ± 13.4	0	1.37 ± 5.03	0.15 ± 5.11	4.05 ± 10.69	3.44 ± 9.87	-0.56 ± 7.32
Lateral	-1.36 ± 11.89	0	2.95 ± 6.35	2.68 ± 8.69	4.59 ± 12.43	8.16 ± 14.64	12.50 ± 18.01
Right Limb							
AP	10.57 ± 14.72	0	-0.26 ± 6.16	1.95 ± 6.83	1.70 ± 10.27	-3.40 ± 13.16	6.43 ± 9.56
Lateral	8.11 ± 18.17	0	3.53 ± 11.13	2.53 ± 10.81	3.63 ± 11.7	1.62 ± 15.66	-0.43 ± 12.94
Left Limb							
AP	5.10 ± 14.94	0	0.95 ± 9.5	4.72 ± 10.8	5.84 ± 14.24	8.13 ± 13.46	1.38 ± 21.03
Lateral	5.42 ± 19.05	0	-1.18 ± 5.31	0.65 ± 5.79	3.58 ± 8.3	7.46 ± 11.01	11.71 ± 15.75

Since the very beginning of endovascular surgery, it became apparent that the aneurysm geometry changes immediately postoperatively and continues to change <u>even after 3years</u>, a process characterized as remodelling

Notably, these changes mirror the force and stress distribution (<u>mechanical basis of</u> <u>REMODELLING</u>)

Remodelling: decrease of angulation of infarenal neck

TABLE Suprarenal and Infrarenal Angulation During Follow-up After Endovascular Aneurysm Repair						
	Baseline	Postoperative 🕻	Year 1	Year 2	Year 3	
Suprarenal angulation, °	28±16	22±16	19±15	17±14	16±13	
Mean difference versus baseline, °		5±1	9±1	11±2	12±1	
Infrarenal angulation, °	50±18	41±15	39±14	38±14	36±14	
Mean difference versus baseline. $^\circ$		8±2	11±2	11±2	13±2	

♦ CLINICAL INVESTIGATION

Aortic Neck Angulations Decrease During and After Endovascular Aneurysm Repair

Jasper W. van Keulen, MD¹; Frans L. Moll, MD, PhD¹; Jeroen Arts¹; Evert-Jan P. Vonken, MD, PhD²; and Joost A. van Herwaarden, MD, PhD¹

Since the very beginning of endovascular surgery, it became apparent that the aneurysm geometry changes immediately postoperatively and continues to change <u>even after 3years</u>, a process characterized as remodelling

Notably, these changes mirror the force and stress distribution (<u>mechanical basis of REMODELLING</u>)

Remodelling: decrease of iliac angulation / tortuosity

The impact of endovascular aneurysm repair on aortoiliac tortuosity and its use as a predictor of iliac limb complications

Table II. Tortuosity related to graft device implanted

	$\begin{array}{l} Zenith\\ (n=40) \end{array}$	Excluder $(n = 40)$	Endurant $(n = 40)$
Preoperative			
Aortic	1.08(1.01-1.48)	1.09 (1.01-1.38)	1.12(1.01-1.54)
Right iliac	1.11 (1.02-1.35)	1.11 (1.01-1.51)	1.11 (1.02-1.35)
Left iliac	1.13 (1.01-1.51)	1.14 (1.02-1.41)	1.16 (1.00-1.61)
Postoperative			
Aortic	1.04(1.00-1.40)	1.07(1.01-1.31)	1.10(1.01-1.48)
Right iliac	1.07(1.01-1.31)	1.10 (1.01-1.48)	1.09 (1.01-1.31)
Left iliac	1.09 (1.01-1.39)	1.13 (1.01-1.40)	1.14 (1.02-1.58)

Coulston et al, JVS, 2014; 60:585-9

Redistribution of peak wall stress from sac to neck and iliacs postEVAR

Computational studies have associated the postEVAR geometrical changes with increase of wall stress at the sealing sites (due to continuous outward radial forces) and decrease of the AAA sac stress, thus enabling shrinkage

Aortic Compliance Following EVAR and the Influence of Different Endografts: Determination Using Dynamic MRA

Level A Level B Level C Level D

Figure 2 Representative preoperative images without (A) and with (B) automatically created segmentation of the aorta at the level of maximum aneurysm sac diameter.

Elastic modulus (Ep): measure of distensibility

$$\mathsf{E}_{\mathsf{p}} = \mathsf{K} \frac{\mathsf{P}_{\mathsf{sys}} - \mathsf{P}_{\mathsf{dias}}}{(\mathsf{D}_{\mathsf{sys}} - \mathsf{D}_{\mathsf{dias}})/\mathsf{D}_{\mathsf{dias}}} = \mathsf{K} \mathsf{D}_{\mathsf{dias}} \frac{\Delta \mathsf{P}}{\Delta \mathsf{D}} \qquad \beta = \mathsf{In} \Big(\frac{\mathsf{P}_{\mathsf{sys}}}{\mathsf{P}_{\mathsf{dias}}} \Big) \frac{\mathsf{D}_{\mathsf{dias}}}{\Delta \mathsf{D}}$$

Stiffness (B): expresses the viscoelastic behavior of aortic wall

VASCUPEDIA

J ENDOVASC THER 2006;13:406-414

Mechanical changes of aortic wall after EVAR

Aortic compliance is decrased directly after endograft implantation (stiffness increase)

J ENDOVASC THER 2006;13:406-414

Mechanical changes of aortic wall after EVAR

Compliance of Abdominal Aortic Aneurysms before and after Stenting with <u>Tissue Doppler</u> Imaging: Evolution during Follow-Up and Correlation with Aneurysm Diameter

Fig. 2. Evolution of MMSD during follow-up after successful endovascular repair, showing a significant decrease between the preoperative measurement and the early control before discharge but not during later follow-up.

- ✓ Aortic compliance decreases immediately after the endograft implantation (increase of stiffness) but stays steady during follow-up
- ✓ Aortic mechanical changes post-EVAR are not related to the decrease rate of aneurysm diameter.

Mechanical changes of Aortic wall after EVAR

AAA SAC +ENDOGRAFT = COMBINED SYSTEM

VASCUPEDIA

Georgakarakos et al, Vasc Med 2012; 17:168-73

Hemodynamic and mechanical interpretation of the clinical performance of abdominal aortic endografts: principles and considerations

PERFORMANCE OF ENDOGRAFS INFRARENAL NECK ✓ FIXATION MODES ✓ CENTRAL FIXATION ✓ DISTRIBUTION OF FORCES ✓ IMPROVEMENTS & MODIFICATIONS

The Proximal Fixation Strength of Modern EVAR Grafts in a Short Aneurysm Neck. An *In Vitro* Study

W.M.P.F. Bosman ^{a,*}, T.J.v.d. Steenhoven ^a, D.R. Suárez ^{b,c}, J.W. Hinnen ^{a,d}, E.R. Valstar ^{b,e}, J.F. Hamming ^a

10 mm seal
 ZZZ 15 mm seal

*****: p<0.05

VASCUPEDIA

Figure 2 The endografts used in this study: A. Gore Excluder, B. Vascutek Anaconda and C. Medtronic Endurant.

Eur J Vasc Endovasc Surg (2010) 40, 429-435

Aortic and Iliac Fixation of Seven Endografts for Abdominal-aortic Aneurysm Repair in an Experimental Model Using Human Cadaveric Aortas

N. Melas^a, A. Saratzis^{a,b,c,*}, N. Saratzis^a, J. Lazaridis^a, D. Psaroulis^a, K. Trygonis^a, D. Kiskinis^a

Table 4 Results: displacement force (in Newton) necessary to dislocate the proximal portion of the graft > = 20 mm from its fixation zone.

Grafts with hooks or barbs	Grafts with no h	ooks or barbs	P
Median: 36.10 (range: 21.85-40.90)	Median: 14.80 (r	range: 12.50-16.65)	< 0.001
Infrarenal fixation	Suprarenal supp	ort - fixation	
Median: 22.60 (range: 14.10-37.50 N)	Median: 16.20 N	(range: 12.50-40.90 N)	0.90
Grafts with hooks or barbs	Pre balloon dilatation	Post balloon dilatation	
	Mean: 26.97 ± 6.44 (SD)	Mean: 32.45 ± 6.71 (SD)	< 0.001
Grafts with no hooks or barbs	Rre balloon dilatation	Post balloon dilatation	
	Mean: 13.58 ± 1.46 (SD)	Mean: 14.72 ± 1.41 (SD)	= 0.003

SD: standard deviation.

Conclusions: Devices with fixation hooks displayed higher proximal fixation. Moulding-balloon dilatation increased proximal and distal fixation. Suprarenal support did not affect proximal fixation.

Factors influencing stress distribution at the infrarenal neck

De Bock et al, Med Eng Phys 2014; 36: 1567-76

Low oversizing (i.e., 10%) is associated with significant asymmetry of forces at the infrarenal neck

Factors influencing stress distribution at the infrarenal neck

De Bock et al, Med Eng Phys 2014; 36: 1567-76

Factors influencing stress distribution at the infrarenal neck

Newly introduced Nitinol-free technologies and sealing patterns claim to decrease the continuous outward pressure on the infrarenal neck, thereby prohibiting the neck enlargement postEVAR

VASCUPEDIA

De Donato et al., JVS 2016; 63:8-15 Börsen et al., JVS 2017; 24:677-87 Savlovskis et al., JVS 2017; 62:541-9 Hemodynamic and mechanical interpretation of the clinical performance of abdominal aortic endografts: principles and considerations

PERFORMANCE OF ENDOGRAFTS LLIAC LIMBS ✓ DISTAL FIXATION ✓ DISTRIBUTION OF FORCES ✓ DESINGS AND MECHANISMS ✓ ENDOLEAKS ✓ THE ROLE OF GEOMETRY ✓ IMPROVEMENTS & MODIFICATIONS

Distribution of forces on endografts

The greatest percentage of forces is applied at the bifurcation of endografts

 TABLE

 Comparison of the Simulated Hemodynamic Forces Over the Total Stent-Graft and the Bifurcation

 Component for All 4 Patients

	Total F	orce, N	Caudal	Force, N
	Stent-Graft	Bifurcation	Stent-Graft	Bifurcation
Patient A	6	4.4	~0	4
Patient K	8.4	6.4	6	5.2
Patient M	6.3	8.4	4.1	6.8
Patient S	2.4	3.8	2	2.8

Howell et al, JEVT, 2007; 14:138-43

Distribution of forces at the iliac limbs of endografts

Conclusions: These results suggest that the downward force on a bifurcated stent-graft, which may exceed the force required to dislodge it when relying on radial attachment alone, is determined mostly by the proximal graft diameter. Curvature of the graft limbs creates an additional sideways force that works to displace the distal limbs of the graft from the iliac arteries.

on the proximal attachment zone. Side forces on the curve add to the drag forces on the proximal end and provide an upward displacement force from the distal landing zone.

Liffman et al, JEVT 2001; 8:358-71

Estimating the magnitude of forces at the iliac limbs of endografts

Estimating the magnitude of forces at the iliac limbs of endografts

Estimating the magnitude of forces at the iliac limbs of endografts

	Proximal end			Distal end		
Angle	0 °	45°	90	0 °	45°	90
Non-tapere	ed					
145/80	0.22 ± 0.02	0.57 ± 0.01	0.84 ± 0.02	0.09 ± 0.04	0.55 ± 0.01	0.87 ± 0.01
170/90	0.31 ± 0.02	0.76 ± 0.02	1.31 ± 0.04	0.13 ± 0.03	0.74 ± 0.01	1.30 ± 0.03
190/100	0.38 ± 0.02	1.03 ± 0.03	1.72 ± 0.08	0.19 ± 0.01	0.98 ± 0.04	1.64 ± 0.08
Tapered						
145/80	0.57 ± 0.00	1.20 ± 0.01	1.35 ± 0.01	0.43 ± 0.00	1.15 ± 0.01	1.42 ± 0.01
170/90	0.77 ± 0.01	1.60 ± 0.03	1.81 ± 0.02	0.59 ± 0.01	1.55 ± 0.01	1.90 ± 0.01
190/100	0.97 ± 0.05	1.90 ± 0.04	2.30 ± 0.02	0.76 ± 0.03	1.86 ± 0.03	2.40 ± 0.01
Bell-botton	n					
145/80	0.00 ± 0.01	0.65 ± 0.02	1.48 ± 0.04	2.72 ± 0.01	3.59 ± 0.02	4.08 ± 0.05
170/90	(-0.02 ± 0.01)	0.69 ± 0.03	1.80 ± 0.06 🗴	3.62 ± 0.01	4.54 ± 0.02	5.50 ± 0.04
190/100	-0.06 ± 0.01	0.95 ± 004	2.32 ± 0.06	4.58 ± 0.01	5.80 ± 0.03	6.85 ± 0.05

 ✓ The generated forces are particularly higher at the distal end of bell-bottom grafts
 ✓ Need for more vigilant surveillance?

Hemodynamic and mechanical interpretation of the clinical performance of abdominal aortic endografts: principles and considerations

PERFORMANCE OF ENDOGRAFTS]
GEOMETRY	
✓INFRARENAL NECK	
✓ ILIAC LIMBS	
✓ CURVATURE OF ENDOGRAFTS	

Factors influencing the pull-out forces predisposing to migration

Increasing angulation decreases measured aortic stent graft pullout forces

Rahmani et al, J Vasc Surg 2016; 63:493-9

Pullout forces decrease with increasing angle Therefore suprarenal stent with anchors is helpful

Table III. Pullout forces (in N) for each of the six stent grafts (SGs) at each 10-degree increment between 0 and 90°, presented as average values \pm standard deviation (where applicable), along with slopes and R^2 values for linear fits of average pullout forces vs angles

Angle, degrees	Treovance	Zenith Flex	Zenith LP	Endurant	Talent	Anaconda
0	39.3 ± 10.6	59.8	50.3 ± 6.3	29.9 ± 1.5	6.0 ± 1.0	37.0 ± 3.2
10	37.0 ± 7.5	53.2	63.3 ± 3.4	32.7 ± 3.4	7.5 ± 0.7	36.0 ± 3.4
20	38.6 ± 4.4	43.3	57.8 ± 4.0	31.3 ± 2.0	7.0 ± 1.3	34.0 ± 4.3
30	35.1 ± 8.9	54.0	62.2 ± 1.9	34.1 ± 7.3	7.2 ± 0.9	35.6 ± 2.2
40	37.8 ± 5.0	63.4	49.2 ± 4.7	32.5 ± 8.0	7.2 ± 1.3	36.3 ± 1.3
50	33.9 ± 6.7	60.9	54.7 ± 2.4	28.3 ± 4.8	7.0 ± 1.5	34.7 ± 3.1
60	35.0 ± 2.8	55.2	51.9 ± 3.8	28.7 ± 5.1	6.3 ± 1.3	35.0 ± 1.9
70	33.3 ± 2.2	55.3	51.1 ± 2.9	27.8 ± 2.8	6.0 ± 0.8	34.2 ± 1.8
80	29.3 ± 1.2	50.9	49.3 ± 2.0	26.7 ± 3.2	5.9 ± 1.2	30.0 ± 5.3
90	23.9 ± 2.4	48.9	41.8 ± 5.3	25.8 ± 4.6	5.5 ± 1.5	30.3 ± 1.2
Slope	−0.13 N∕°	−0.032 N∕°	−0.14 N∕°	−0.07 N/°	−0.014 N/°	−0.063 N/°
R^{2}	0.67	Not applicable	0.43	0.59	0.37	0.65

Geometric factors affecting displacement forces on endografts

Li & Kleinstreuer, J Biomech, 2006; 39: 2264-73

✓ Neck angulation

✓Inlet diameter

✓ Diameter ratio of inlet/outlet (mainbody/iliac limbs) ✓ Bifurgation an gulation

✓ Bifurcation angulation

Geometric factors affecting displacement forces on endografts

A Computational Study of the Magnitude and Direction of Migration Forces in Patient-specific Abdominal Aortic Aneurysm Stent-Grafts

According to Molony et al. that the anteroposterior angle of the neck and the high diameter ratio of inlet/outlet are the most significant parameters to affect the displacement forces

Molony et al, EJVES, 2010; 40:332-9

Geometric factors affecting displacement forces on endografts: curvature

Geometric factors affecting displacement forces: effect of neck & iliac angulation

A straight neck and/or straight iliacs is associated with decreased displacement forces

The configuration of neck/iliacs modifies also the direction of displacement forces

Figueroa et al, EJVES, 2009; 16:284-94

TABLE 2

Total and 3D Components of Displacement Force (F) for the Curved Endograft, Straight Neck, and Straight Iliac Arteries Simulations

	Curved Endograft		Straight Neck		Straight Iliacs
Fx (lateral), N Fy (anterior), N Fz (axial), N Total force, N % downward	-2.22 4.26 -1.42 5.01 28.35	>	- 1.48 3.43 - 1.87 4.18 44.76	>	0.28 2.09 -0.19 2.12 8.97

Computational estimation of the direction of displacement forces

Curvature of endografts as factor for early complications: a practical example

AAA geometry	Patient		
Age	54		
Comorbidities	CHF, MR		
AAA diameter (mm)	61		
Neck diameter (mm)	27		
Neck morphology	cylindiral		
Neck length (mm)	28		
Neck angulation	severe		
Right CIA length (mm)	65		
Right CIA diameter (mm)	33		
left CIA length (mm)	70		
left CIA diameter (mm)	34		
lliac angulation	severe		
CIA aneurysm	bilateral		
Fixation to EIA	bilateral		
e-tegra size	32x100mm		
complications	endoleak la		
2ndary interventions	Aortic cuff		
FU (12m)- outcome	Complete sealing - alive		

Ideal dimensions of infarenal neck Introduction of mainbody from the left side...

Curvature of endografts as factor for early complications: a practical example

Despite the relative aortic straightening from the Landerquist wires which facillitated endograft deployment, withdrawal of the superstiff wires restored the high curvature and led to immediate migration of the endograft from the site of deployment...this was managed with deployment of an aortic cuff centrally!

Curvature of endografts as factor for late complications also!

The aforenentioned association of increased displacement forces with excessive endograft curvature explains this phenomenon!

Clinical Investigation

Curvature of endografts as factor for late complications also!

Ann Vasc Surg. 2017 May;41:110-117. doi: 10.1016/j.avsg.2016.09.020. Epub 2017 Feb 27.

The Impact of Aortic Tortuosity on Delayed Type I or III Endoleak after Endovascular Aortic Repair.

Chen PL¹, Hsu HL², Chen IM³, Chen YY⁴, Chou KY⁵, Kuo TT¹, Shih CC⁶.

Author information

Abstract

BACKGROUND: Endovascular aneurysm repair (EVAR) becomes the treatment of choice for patients with abdominal aortic aneurysm (AA Type I or III endoleak is related to high risk of rupture and reintervention, but little is known about the delayed presentation of these. We sought to evaluate the delayed type I or III endoleak after EVAR and assess the early morphological portending factors.

METHODS: We retrospectively reviewed a database of 249 patients who underwent endovascular repair with a Zenith AAA stent graft (Cook Medical, Bloomington, IN) in a single institute from October 2005 to December 2013. Age, aneurysm size, angulation, tortuosity index (TI), and follow-up evaluations were recorded and analyzed. Patients having <1 year of follow-up were excluded.

RESULTS: One hundred eighteen patients were included in this study. There was no delayed type Ia endoleak. Ten patients (9.3%) were found to have a delayed type Ib or III endoleak. The mean diagnosis time was 49.1 months (range, 22-91 months) after EVAR. All of them were treated with endovascular repair except one had combined open revision. Three of the patients (30%) with delayed endoleaks presented with a ruptured aneurysm, and two of them (20%) died after reintervention. Postoperative TI was found to be the most significant morphological factor associated with increased risk of type Ib or III endoleak.

CONCLUSIONS: Delayed type Ib or III endoleak was not rare in our study population and was found to have a high risk of rupture and mortality. Aneurysm tortuosity is associated with increased risk of endoleaks, and postoperative TI can be an indicator in the early period of follow-up.

Centerline of flow length 3D straight length

Hemodynamic and mechanical interpretation of the clinical performance of abdominal aortic endografts: principles and considerations

PERFORMANCE OF ENDOGRAFTS			
ILIAC LIMBS			
✓ FLOW PHENOMENA			
✓ SHEAR STRESSES			
✓ MODES OF COMPLICATIONS			

Effect of iliac geometry on flow dynamics

Limbs geometry affects the profile of flow velocity and shear stresses at the limbs...

Effect of iliac geometry on flow dynamics

VASCUPEDIA

The Influence of iliac tortuosity: suggested mechanism

Suboptimal apposition of the distal end of iliac stent on a curved vessel leads to endothelial injury due to different directions of endograft and artery movement during the cardial cycle **Myointimal** hyperplasia **Myointimal** Stenosis **Myointimal**

Georgakarakos et al, JEVT, 2017; 22:413-420

Effect of iliac geometry on flow dynamics

Iliac limb stenosis causes alterations in the distribution of shear stresses and pressures, predisposing to occlusion!

Georgakarakos et al, JEVT, 2017; 22:413-420

Use of balloon-expandable stents to support stenosed iliac limbs

Georgakarakos & Koutsoumpelis, DIR 2018; 24:113-114

Hemodynamic and mechanical interpretation of the clinical performance of abdominal aortic endografts: principles and considerations

PERFORMANCE OF ENDOGRAFTS

CENTRAL CIRCULATION

✓ MODES OF ACTION

✓ MECHANICAL PARAMETERS

The effect of endografts on central hemodynamics

Fig. 21.2 The augmentation index (AI) is the augmented pressure (AP) divided by pulse pressure (PP). Calibration of blood pressure is not required

How can EVAR affect central hemodynamics?

An Aid for Clinical Research and Graduate Education

D Springer

The effect of endografts on central hemodynamics

Pulse wave velocity increases after EVAR...

J ENDOVASC THER 2012;19;661–666

Changes in pulse wave velocity depend on the type of material and structural designs of endografts

TABLE 4 Pulse Wave Velocity and Novel Biomarkers in Patients Undergoing Endovascular Aneurysm Repair According to the Type of Endograft

	PTFE	PTFE (n=46)		Polyester (n=72)		
	Baseline	End	Baseline	End	p1†	p2 [†]
PWV, m/s	12.05±2.55	14.87±2.43*	12.63±2.75	16.75±2.88*	0.685	0.033
OPG, pmol/L	15.18±3.78	10.51±4.46*	15.72±5.02	12.45±4.94*	0.803	0.048
IL-8, pg/mL	11.27±5.09	17.97±8.1*	10.27 ± 5.02	25.68±11.11*	0.681	<0.001
IL-6, pg/mL	3.81±1.51	3.69±1.37	3.89 ± 4.56	3.58±1.50	0.944	0.883
IL-10, pg/mL	5.35±1.57	8.39±2.22*	4.36±2.08	7.64±1.52	0.271	0.518

Continuous data are presented as the means \pm standard deviation.

PTFE: polytetrafluoroethylene, PWV: pulse wave velocity, OPG: osteoprotegerin, IL: interleukin.

* p<0.05 between baseline and end.

† p1: differences between groups at baseline; p2: change in variables between groups.

The effect of endografts on central hemodynamics

Table 2. Baseline (Pre-Op) Characteristics of Patients and 7-Day (Post-Op) Outcomes After Endovascular Aortic Repair					
Characteristic	Pre-op (n=40)	Post-op (n=40)	P value		
Systolic blood pressure (mmHg)	131±15	128±15	0.075		
Diastolic blood pressure (mmHg)	76±8	72±9	<0.05		
Heart rate (beats/min)	65±10	69±12	<0.05		
baPWV (cm/s)	1,914±389	2,096±459	<0.05		
Inferior vena cava dimension (mm)	12±3	12±3	0.574		
LV volume index at end-diastole (ml/m ^{2.7})	28.3±4.9	29.1±4.0	0.096		
Left atrial volume index (ml/m ^{2.7})	13.7±4.4	15.4±4.6	<0.05		
LVEF (%)	68±5	67±4	0.127		
IVST at end-diastole (mm)	9.0±2.3	9.1±2.3	0.623		
LV PWT at end-diastole (mm)	8.7±1.1	8.9±0.9	0.118		
LV PWT at end-systole (mm)	15.0±2.0	15.1±2.1	0.749		
DWS	0.41±0.09	0.40±0.09	0.429		
LV mass index (g/m ^{2.7})	42±10	45±11	<0.05		
Relative wall thickness	0.35±0.05	0.35±0.04	0.663		
E/A ratio	7.8±1.3	0.78±0.20	0.427		
Deceleration time of E wave (ms)	244±37	243±39	0.886		
E' (cm/s)	7.8±1.3	7.8±1.5	0.773		
E/E' ratio	8.2±1.8	8.4±1.5	0.385		

Takeda et al, Circul J 2014; 78: 322-8

Table 3. Baseline (Pre-Op) Characteristics of Patients and 1-Year (Follow-up) Outcomes After Endovascular Aortic Repair					
Characteristic	Pre-op (n=22)	Follow-up (n=22)	P value		
Specific activity scale score	6.0±1.6	5.3±1.9	<0.05		
Systolic blood pressure (mmHg)	131±15	131±16	0.953		
Diastolic blood pressure (mmHg)	75±8	74±10	0.476		
Heart rate (beats/min)	64±9	62±10	0.283		
baPWV (cm/s)	1,834±329	1,942±387	<0.05		
Inferior vena cava dimension (mm)	12±3	12±2	0.606		
LV volume index at end-diastole (ml/m ^{2.7})	29.2±4.8	27.2±4.4	<0.05		
Left atrial volume index (ml/m ^{2.7})	14.0±5.3	16.2±4.7	<0.05		
LVEF (%)	68±5	68±5	0.866		
IVST at end-diastole (mm)	9.5±2.6	9.8±2.8	0.088		
LV PWT at end-diastole (mm)	8.6±1.0	9.0±1.0	0.201		
LV PWT at end-systole (mm)	15.0±1.7	14.8±2.4	0.646		
DWS	0.42±0.09	0.38±0.10	0.066		
LV mass index (g/m ^{2.7})	43±11	45±11	<0.05		
Relative wall thickness	0.35±0.05	0.37±0.04	<0.05		
E/A ratio	0.82±0.21	0.75±0.19	<0.05		
Deceleration time of E wave (ms)	249±32	246±47	0.733		
E' (cm/s)	7.8±1.5	7.3±1.8	0.060		
E/E' ratio	8.5±1.7	8.6±2.1	0.052		
Serum creatinine (mg/dl)	0.88±0.34	1.04±0.68	<0.05		
eGFR (ml·min ⁻¹ ·1.73m ⁻²)	13.6±1.6	13.5±1.8	0.766		

EVAR affects PWV directly postoperatively (from the 1st week), while it also affects cardiac function (left ventricle volume index at end-diastole and left atrial volume index) in the long-term, i.e., alteration of vascular stiffness, cardiac structure and function!

Take home messages

- ✓ Stent implantation causes geometric changes that impose flow disturbance and stress alterations on the vessel wall
- Studying combinations of geometrical features has better predictive role that a sole geometric parameter
- ✓ No endograft is ideal; rather, every design serves ideally certain AAA anatomies while less efficiently some others
- Forces predisposing to migration and dislodgement of endografts are increased by certain geometrical factors
- ✓ The degree of oversizing of endografts' central segments has important implications since it affects the efficiency of apposition and heterogeneity of applied forces
- ✓ Iliac tortuosity and endograft's curvature have an intriguing role in the postimplantational stability
- \checkmark EVAR can increase arterial pulse-wave-velocity with potential late consequences

Questions to Vascupedians

- Do you routinely use endografts with suprarenal fixation or reserve them for cases of angulated infrarenal necks?
- Would you consider primary distal-end stenting in cases of suboptimal apposition of iliac-limbs on tortuous vessels?
- Would you change your EVAR-practice over infarenal necks of marginally large diameter? How often would you consider a Nitinol-free based endograft strategy?
- Are you concerned about the potential influence of EVAR on pulse wave velocity and/or myocardial function?
- Would you modify your CT follow-up strategy in cases of "risky" geometrical factors predisposing to migration?
- Which geometrical parameter(s) would you be most sceptical for?
- Are you concerned about migration of iliac limbs & loss of sealing (endoleak Ib) in cases of iliac tortuosity?
- What is your usual strategy of proximal oversizing in cases of short or angulated necks?