

VASCUPEDIA

Occlusion of the SMA

When endovascular, when open and how

Giovanni Torsello, MD St. Franziskus Hospital Muenster

e-mail: giovanni.torsello@sfh-muenster.de

Mesenteric ischemia: controversies

 Therapy: open surgery vs. endovascular • Bare stent or covered stent • Tranbrachial or femoral approach • Material: autologous vs. alloplastic o Inflow: antegrade vs. retrograde Multiple vs. single vessel revascularization Open surgery: TEA – Bypass – Transposition

SMA Transposition

o No alloplastic materialo Infrarenal aorta must be OK

Retrograde mesenteric bypass

- Vein or alloplastic
- Infrarenal Aorta must be OK
- o Attention: kinking

Antegrade mesenteric bypass

- Suprarenal inflow better
- No risk of kinking

 $_{\rm O}$ Any location of the distal anastomosis

Antegrade bifurcated Bypass

Open surgery for mesenteric ischemia

 Good mid- and long-term results (primary patency and symptom relief up to 92% at 5 years)

 High perioperative morbidity (16-66%) and mortality

o Longer length of stay at ICU and at hospital

Clair D, Beach J. N Eng J Med 2016;374:959

Endovascular therapy of SMA stenosis

Endovascular therapy of SMA occlusion

Table 2. Outcomes of entire CMI patient series treated by endovascular means

	Overall	Stenosis	Occlusion	
	(n= 77)	n=51	n=26	p*
Intention to treat vessels				
Recanalization failure	n= 13, 16.9%	n=5, 9.8%	n=8 30.8%	
Primary technical success	n=64, 83.1%	n=46, 90.2%	n=18, 69.2%	0.020
Early primary patency	n=41, 64.1%	n=31, 67.4%	n=10, 55.6%	0.200
Early secondary interventions	n=18, 28.1%	n=10, 21.7%	n=8, 44.4%	0.068
Early secondary patency	n=55, 85.9%	n=39, 84.8%	n=16, 88.9%	0.510
Mid-term primary patency	n=24, 37.5%	n=21, 45.7%	n=3, 16.7%	0.028
Secondary interventions	n=14, 21.9%	n=11, 23.9%	n=3, 16.7%	0.528
Mid-term secondary patency	n=45, 70.3%	n=34, 73.9%	n=11, 61.1%	0.370
* Analysis between stenotic and occluded vessels, significance was set at p<0.05 and appear bold typed				

Endovascular therapy

- Relief of symptoms in 95%
- Low morbidity and mortality
- o High secondary procedure rate (restenosis in up to 40%;
 20-50% require reintervention)
- O Useful in obstile abdomen (colonic resection, peritonitis)

Colonic gangrene, hemicolectomy

Retroperitoneal (TAAA) approach, TEA, Patch SMA and celiac trunc

Retroperitoneal (TAAA) approach, TEA, Patch SMA and celiac trunc

Coral-reef-Aorta

Thrombus can be a contraindication for Endo

Transaortic thrombectomy of the SMA

CTA before and after thrombectomy

Conclusions

- Both open surgery and endovascular techniques are effective. The decision is based on single patient.
- Main parameters affecting selection criteria are the anatomical characteristics of the lesion (length, occlusion grade, calcification, thrombus amount) clinical status of the patient (life expectancy, operative risk), operators experience and his technical skills approaching visceral arteries