

DCB4AV

Panagiotis M. Kitrou MD, MSc, PhD, EBIR Consultant Interventional Radiology Patras University Hospital Greece

Why do we get Stenosis in AV access?

Characteristics of AV access stenosis

Characteristics of AV access stenosis

Myofibroblasts and differentiated contractile SMCs

Extensive extracellular matrix formation and accumulation

Fibromuscular thickening of the vascular wall

Venous Neo-Intimal Hyperplasia

Roy-Chaudhury P, et al. Neointimal hyperplasia in early arteriovenous fistula failure. Am J Kidney Dis 2007;50:782–790. Roy-Chaudhury P et al. Future directions for vascular access for hemodialysis. Semin Dial 2015;28(2):107-113 Roy-Chaudhury P et al. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J Am Soc Nephrol 2006;17(4):1112-1127 Skartsis N, Manning E, Wei Y, et al. Origin of neointimal cells in arteriovenous fistulae: bone marrow, artery, or the vein itself? Semin Dial 2011;24(2):242-248

Drug-Coated Balloons (DCBs)

Paclitaxel: Cytotoxic Chemotherapeutic Drug that exerts its toxicity by inhibiting the disassembly of microtubules in M phase of cell cycle

Excipient: Substance facilitating drug transfer and apposition to the vascular wall. Different substances are used as excipients in different DCBs

Drug Dosage: Paclitaxel dose varies between devices from 2 to >3.5µg/mm²

Treatment Approach for AV stenosis

DCB use in AV access transformed the treatment into a 2-step procedure

Step 1: Mechanical Treatment of Stenosis (Immediate Lumen Gain)

Step 2: Inhibition of Restenosis Process (Future Pharmaceutical Gain)

Tips & Tricks: How I do it

Vessel Preparation: High Pressure Balloon (HPB) Angioplasty to "beat" the fibrotic stenosis

Geographic Miss: DCB is 5mm longer from each side compared to the initial HPB

Balloon Diameter: DCB diameter is the same or 1mm higher than HPB

Inflation Pressure: 2atm greater than nominal pressure

Inflation Time: A minimum of 2minutes of DCB inflation is needed

Data Analysis

Available published data so far (July 2018)

Study Design - based	# of Studies	# of Patients with DCB
Multi-center RCT	1	141
Single-center RCT	5	156
Single-arm Prospective Studies	4	105
Retrospective Analysis	6	181

Device – based	# of Studies	# of Patients with DCB		
Lutonix (Becton Dickinson)	4	223		
In.Pact (Medtronic)	8	271		
SeQuent Please (B Braun)	1	10		
Elutax-SV (Aachen Resonance)	1	15		
Freeway 035 (Eurocor, Germany)	1	26		
Mixed	1	38		

16 583

Author (year)	Туре	Group	Device Category	Pts	VA	F-up	Primary Endpoint	Results	Sig.	Device Type	Comments
Zheng et al. (2018)	PS	SG	PCB+SB	23	AVF AVG	12	TLPP	45%	n.a.	Lutonix 035, BARD PV	+Scoring Balloon
Irani et al. (2018)		SG	РСВ	63	AVF AVG	12	100000	51%		IN.PACT, Medtronic	Randomization after lesion crossing
	RCT	CG	PTA	62			TLPP	34%	5.5.	Reef HP, Medtronic	
Trerotola et al. (2018)		SG	РСВ	141	AVF	6	TLPP	71%		Lutonix 035, BARD PV	Multicenter
	RCI	CG	PTA	144				63%	n.s.	High Pressure Balloon	
Maleux et al. (2018)	RCT	SG	PCB	33	AVF	12	TLPP -	42%		IN.PACT, Medtronic	Low Pressure balloon Angioplasty
		CG	PTA	31				39%	n.s.	Admiral Extreme, Medtronic	
Kitrou et al.	0.07	SG	РСВ	20	AVF AVG	6	IFP -	179d	1	Lutonix 035, BARD PV	Central Venous Stenosis
(2017)	RCI	CG	PTA	20				124.5d	5.5.		
Troisi et al.	100	SG	PCB		AVE		TLPP	7.9m		Freeway Eurocor - IN.PACT Medtronic - Ranger Bosto	Longitudinal Comparison of treatments
(2017)	RA	CG	PTA	38	AVG	14.3		6.4m	5.5.		
Lucev et al. (2017)	De	SG	РСВ	31	AVF	24	TLPP	45%		IN.PACT, Medtronic	Study compared with historical group
	ा २	CG	PTA	31				16%	3.3.	Reef HP, Medtronic	
Çildag" et al.		SG	PCB	26	A1/F	12	TLPP	65%		Freeway 035 (Eurocor, Germany)	Sizing of 1mm higher than actual vessel diameter
(2016)	RA	CG	PTA	26	AVE			34.6%	5.5.	n.a.	
Kitrou et al. (2016)	RA	SG	PCB	39	AVF AVG	6	TLPP	75%	n.a.	Lutonix 035, BARD PV	Comparison between 1 st & 2 nd treatment
Verbeeck et al. (2016)	PS	SG	РСВ	41	AVF	12	TLPP	60%	n.a.	IN.PACT, Medtronic	Venous Stenosis
Swinnen et al. (2015)		SG	РСВ	37	AVF	12	RFP	69%		IN.PACT, Medtronic	In-stent Restenosis
	RA.	CG	PTA	37				19%	5.5.	n.a.	
Massmann R et al. (2015)	RA	SG	РСВ	10	AVF	n.a. 18.4	R	9m	S.5.	Elutax-SV, Aachen Resonance	CVS Included, CB+HPB used if needed
		CG	PTA	15				4m			
Lai te al. (2014)		SG	PCB	10	AVF	12	TLPP	20%		SeQuent Please, B Braun	Concomitant lesions in same patient.
	PS	CG	РТА	10				0%	n.s.	FoxPlus, Abott Invatec, Medtronic	
Patane et al. (2014)	RA	SG	PCB	26	AVF	24	TLPP	57.8%	n.a.	IN.PACT, Medtronic	Anastomotic Stenosis
Kitrou et al. (2014)	RCT	SG	PCB	20	ANT	12	12 MS	308d	s.s.	IN.PACT, Medtronic	No pre-dilation
		CG	НРВ	20	AVF 12	12		161d		OJ HPB	
Kitrou et al. (2014)	DOT	SG	PCB	20	AVF AVG	10	12 TLPP	35%		IN.PACT, Medtronic	No Dec dilation
	RCI	CG	НРВ	20		12		5%	S.S.	OJ HPB	No Pre-dilation

Kitrou et al. 2014

RCT that included both AVGs and AVFs (40 pts in total)

At that time max DCB diameter was 7mm (Post dilation with a bigger balloon in 55% of cases)

Cost-effectiveness analysis was performed

20

 $\hat{\mathbf{m}}$

20

There was, overall, statistical significance in favor of DCB @ 1 year (25% vs. 5%; p<0.001)

However, when subgroup analysis was performed, difference did not reach significance in case of AVFs

Kitrou PM et al. Drug-eluting versus plain balloon angioplasty for the treatment of failing dialysis access: final results and cost-effectiveness analysis from a prospective randomized controlled trial (NCT01174472).Eur J Radiol. 2015 Mar;84(3):418-423. doi: 10.1016/j.ejrad.2014.11.037

Kitrou et al. 2014

First RCT that included only AVFs (40 pts in total)

Study performed following subgroup analysis of the previous study Post dilation was needed in 65% of the cases (again DCB max D:7mm)

There was statistical significance in favor of DCBs over PTA both in target lesion and access circuit primary patency (270 days vs. 161 days; p=0.04)

Kitrou PM et al. Paclitaxel-coated versus plain balloon angioplasty for dysfunctional arteriovenous fistulae: one-year results of a prospective randomized controlled trial. J Vasc Interv Radiol. 2015 Mar;26(3):348-54. doi: 10.1016/j.jvir.2014.11.003

Lai et al. 2014

10 pts with 20 concomitant lesions in AVFs

One lesion treated with and the other without DCB

TLR-free duration in DCB Group was significantly longer (251.2dvs103.2d; P < .01). TLPP was significantly higher at 6months (70%vs0%; P < .01) but not at 12 months (20%vs0%; P > .05).

Lai et al. Percutaneous angioplasty using a paclitaxel-coated balloon improves target lesion restenosis on inflow lesions of autogenous radiocephalic fistulas: a pilot study. J Vasc Interv Radiol. 2014 Apr;25(4):535-41. doi:10.1016/j.jvir.2013.12.014

Kitrou et al. 2017

First RCT on DCB use for Symptomatic Central Venous Stenosis 40pts recruited in total

Median Intervention free period was significantly better in PCB group (PCB group: 179 days, vs CBA group: 124.5 days, P = .026).

Paclitaxel-Coated Balloons for the Treatment of Kitrou PM et al., Symptomatic Central Venous Stenosis in Dialysis Access: Results from a Randomized Controlled Trial. J Vasc Interv Radiol. 2017 Jun;28(6):811-817. doi:10.1016/j.jvir.2017.03.007.

Trerotola et al. 2018

Multicenter IDE RCT held in the US. 285 pts in 25 centers with a dysfunctional AVF.

Target lesion primary patency 71% for DCB and 63% for control; P=0.06 Significant difference was not reached @ 6 months but @ 8 months

Trerotola SO et al., Drug Coated Balloon Angioplasty in Failing AV Fistulas: A Randomized Controlled Trial. Clin J Am Soc Nephrol. 2018 Aug 7;13(8):1215-1224. doi: 10.2215/CJN.14231217.

Irani at el. 2018

Biggest Single-Center RCT with 119 subjects AVFs: 98, AVGs: 21

Target lesion primary patency @ 6 months: 81% for DCB, 61% for control; P=0.03 @ 12 months: 51% for DCB, 34% for control; P=0.04

Irani FG et al. Hemodialysis Arteriovenous Fistula and Graft Stenoses: Randomized Trial Comparing Drug-eluting Balloon Angioplasty with Conventional Angioplasty. Radiology. 2018 Oct;289(1):238-247. doi: 10.1148/radiol.2018170806.

Ongoing Trials

Lutonix Global AV Registry **PI: Prof. Dimitrios Karnabatidis INPACT AV Access IDE Study** PI: Prof. Andrew Holden Lutonix AV PAS PI: Prof. Scott Trerotola, Prof. Deeraj Rajan PAVE Study PI: Cons. N. Karunanithy

Synopsis

DCB use in AV is Safe (in a 30-day post-procedural period)

They are used as **Drug Delivery Devices**

A proper Vessel Preparation is a prerequisite to ensure immediate successful mechanical result (wide heterogeneity between studies)

50.9% of patients are enrolled in RCTs

84.7% of patients were included in studies using either In.Pact or Lutonix DCB

They have been tested both in AVF & AVG

They have been used in Symptomatic Central Venous Stenosis although device diameter up to date is limited to 12-14mm

There is wide **Procedural Heterogeneity** among studies

In the vast majority of cases, there is consistency of data regarding

TLPP @ 6 months of 70-75% with fluctuating patencies in the control group

More data is needed for adequate subgroup analysis with regard to focused

lesion type and lesion site effectiveness

DCB4AV

Panagiotis M. Kitrou MD, MSc, PhD, EBIR Consultant Interventional Radiology Patras University Hospital Greece