

COMPUTADORA DE ABORDO: 5 AÑOS DESPUÉS DE QUETZAL-1

Angela Marina Quezada Orozco, Jorge Enrique Muñiz Fuentes Laboratorio Aeroespacial UVG | Equipo OBC

CubeSat, Computadora de abordo, Actualización tecnológica, Trade study, Evaluación técnica

ABSTRACT

Quetzal-2 busca posicionar a la Universidad del Valle de Guatemala (UVG) a la vanguardia internacional en el desarrollo de CubeSat. años cinco lanzamiento utilizó de Quetzal-1, que computadora de a bordo NanoMind A3200, se realizó un análisis de los avances tecnológicos en sistemas de cómputo para este tipo de plataformas. El objetivo fue determinar si la tecnología empleada en Quetzal-1 sigue siendo competitiva o si debe actualizarse para mantener la relevancia del nuevo satélite. Se definieron criterios técnicos y estratégicos que permiten una decisión informada sobre la tomar continuidad o sustitución del sistema de cómputo. Este análisis refuerza el compromiso de la UVG con la innovación y la excelencia tecnológica, asegurando que Quetzal-2 esté alineado con los estándares actuales del sector aeroespacial.

INTRODUCCIÓN

En los satélites tipo CubeSat, la computadora de abordo representa el sistema responsable de operaciones autónomas, ejecutar controlar subsistemas, realizar procesamiento de datos y mantener la comunicación con la estación selección adecuada terrestre. computadora es crucial, ya que debe equilibrar capacidad eficiencia de procesamiento, energética, tolerancia a fallos y compatibilidad con otros sistemas. Respecto a la misión Quetzal-2 se requiere una computadora de abordo fiable y probada que se adapte a presupuestos energéticos y espaciales limitados.

OBJETIVOS

- Evaluar computadoras de a bordo disponibles en el mercado para CubeSats.
- Comparar prestaciones técnicas en aspectos clave como consumo energético, memoria y procesamiento.
- Determinar la opción más adecuada para la misión Quetzal-2.

METODOLOGÍA

Se realizó una revisión documental de las especificaciones técnicas de seis computadoras de abordo utilizadas en CubeSats. Se construyó una tabla comparativa considerando: arquitectura del procesador, memoria, interfaces disponibles, sistema operativo, consumo energético y experiencia de vuelo. Se identificaron fortalezas y limitaciones de cada modelo, estableciendo su idoneidad para diferentes tipos de misiones.

RESULTADOS

NANOMIND A3200 (GOMSPACE)

Bajo consumo (~290 mW), arquitectura RISC de 32 bits, memoria FRAM, experiencia comprobada en Quetzal-1.

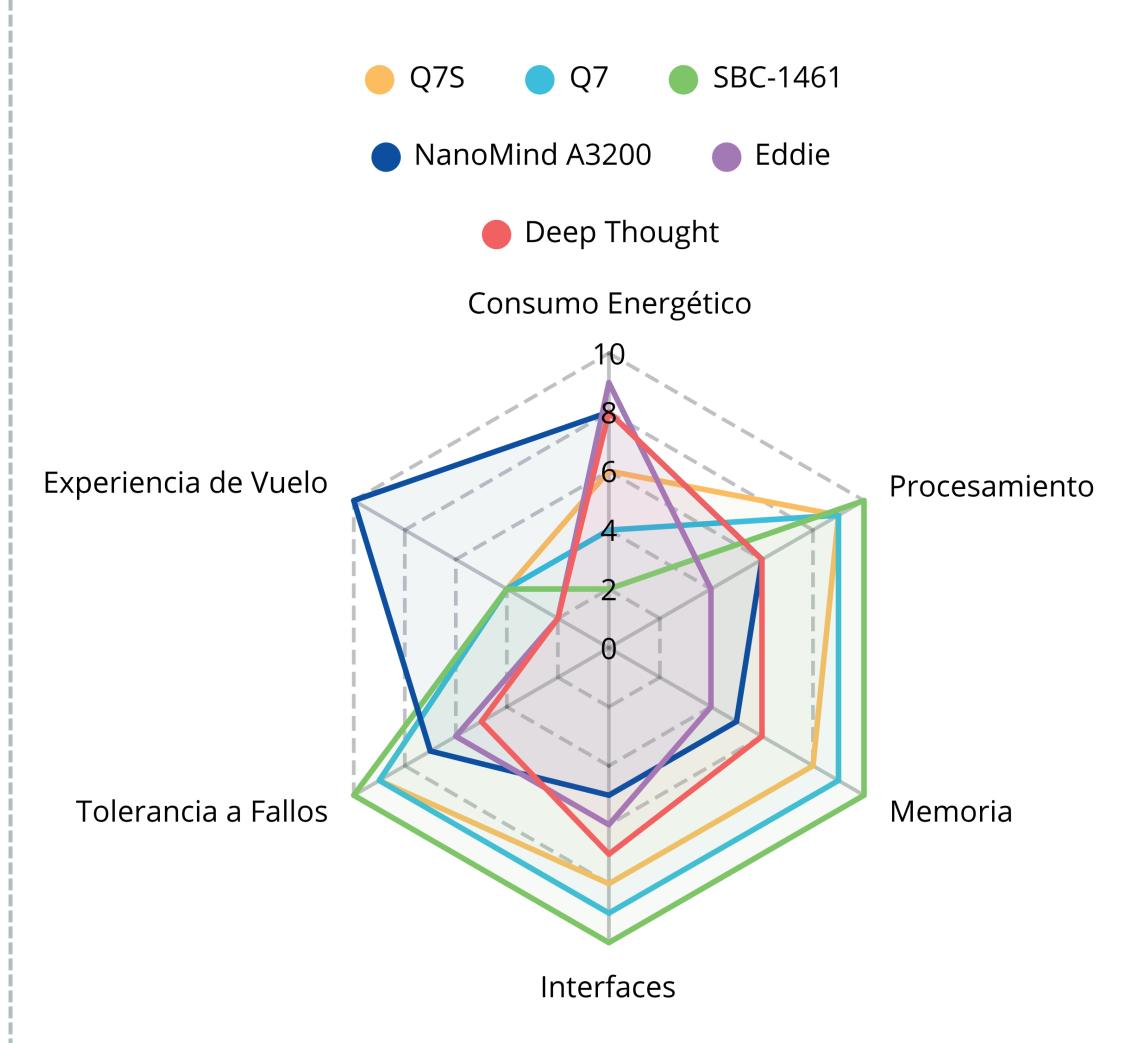
EDDIE (SPACEMANIC)

Ultra bajo consumo (~100 mW), arquitectura de 16 bits, confiabilidad alta, pero menor potencia.

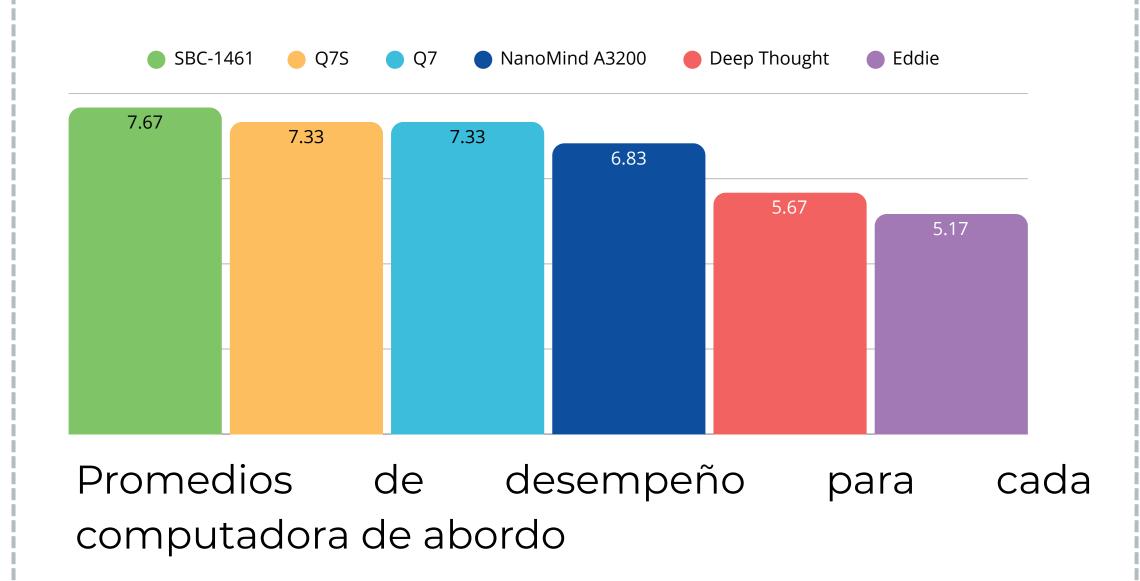
DEEP THOUGHT (SPACEMANIC)

Mejor procesamiento que Eddie (ARM Cortex-M7), mismo consumo, sin FRAM, más interfaces.

Q7 (XIPHOS)


Alto rendimiento en procesamiento y conectividad, buena capacidad de memoria, pero con consumo moderado (~2 W).

Q7S (AAC CLYDE SPACE)


Procesamiento potente con buena eficiencia energética (~1 W), alta tolerancia a fallos y múltiples interfaces disponibles.

SBC-1461 (CESIUM AASTRO)

Arquitectura quad-core con múltiples interfaces, máxima capacidad pero consumo elevado (~5 W), ideal para misiones grandes.

Comparación de Computadoras de Abordo para CubeSat Quetzal-2

Conceptos relevantes:

- FRAM: Memoria no volátil con estructura ferroeléctrica.
- **ECC:** Código para corrección de errores en memoria.
- RTEMS: Sistema operativo embebido de tiempo real.
- LVDS: Comunicación por diferencia de voltaje.
- Bit stream scrubbing: Reescritura periódica de FPGA.
- eMMC: Almacenamiento NAND integrado.
- **pSLC:** Memoria NAND configurada para mayor durabilidad.
- RTOS: Sistema operativo con respuesta garantizada.

CONCLUSIONES

NanoMind A3200 de GomSpace se presenta como una opción confiable y eficiente dentro del conjunto de computadoras de abordo evaluadas, especialmente para misiones que priorizan el bajo consumo energético y la simplicidad operativa. Esto lo hace especialmente atractivo para Quetzal-2

Su diseño ha sido comprobado en vuelo por la Universidad del Valle de Guatemala en Quetzal-1, lo que reduce la curva de aprendizaje para integrarlo en Quetzal-2. Ofrece una capacidad de procesamiento adecuada para cargas útiles básicas, integrando además mecanismos de tolerancia a fallos como la memoria FRAM.

Su amplia documentación y la disponibilidad de herramientas de desarrollo, como el SDK y el código del modelo Quetzal-1, facilitan significativamente su integración. La compatibilidad con interfaces estándar y su robustez mecánica la convierten en una solución bien equilibrada para CubeSats y plataformas similares con presupuestos energéticos y de espacio limitados.

NANOMIND A3200

REFERENCIAS

- GOMspace | NanoMind A3200. (2025). Gomspace.com. https://gomspace.com/shop/subsystems/command-and-data-handling/nanomind-a3200.aspx
- Q7 | Product Details | Xiphos. (2025). Xiphos.com. https://xiphos.com/product-details/q7
- Q7S Satellite Command & Data Handling | AAC SpaceQuest. (2024, August 29). AAC Clyde Space. https://www.aac-clyde.space/what-we-do/space-products-components/command-data-handling/q7s
- SBC-1461. (2025). Cesiumastro.com. https://www.cesiumastro.com/products/sbc-1461
- SPACEMANIC. (2025). Deep Thought On-board Computer Cubesat Components SPACEMANIC. Spacemanic.com.
 https://www.spacemanic.com/deep-thought-onboard-computer/
- SPACEMANIC. (2025). Eddie Onboard Computer Cubesat Components -SPACEMANIC. Spacemanic.com. https://www.spacemanic.com/eddieonboard-computer/#features