Electrodo de grafeno inducido por láser para uso como biosensor

Carmen Lucía Vásquez Meléndez, PhD Vanessa Wilma Jungbluth Departamento de Ingeniería Electrónica, Mecatrónica, Biomédica vas20110@uvg.edu.gt, vwjungbluth@uvg.edu.gt

RESUMEN

La diabetes afecta a millones de personas, especialmente en países de ingresos bajos y medios, y es una de las principales causas de muerte ¹. Los pacientes deben monitorear diariamente sus niveles de glucosa en sangre, lo que requiere un sistema de medición preciso y sencillo². Por ello, se propuso un biosensor basado en grafeno inducido por láser. Primero, se validó la placa de evaluación con pruebas de voltametría cíclica de resistencias. Luego, se diseñaron y fabricaron electrodos de grafeno inducido por láser, caracterizados electroquímicamente mediante voltametría cíclica y amperometría de ferricianuro potásico. Además, se inmovilizó glucosa oxidasa en los electrodos para medir diferentes concentraciones de glucosa. Las pruebas mostraron una relación directamente proporcional entre concentración y corriente, con mediciones reproducibles. Por medio de ello, se concluyó que fueron capaces de medir las distintas concentraciones, cumpliendo con su función como biosensores para la detección de glucosa.

OBJETIVOS

GENERAL

• Diseñar y fabricar un sistema de 3 electrodos basado en grafeno inducido por láser para ser utilizado en aplicaciones de biosensado aplicando una voltametría cíclica.

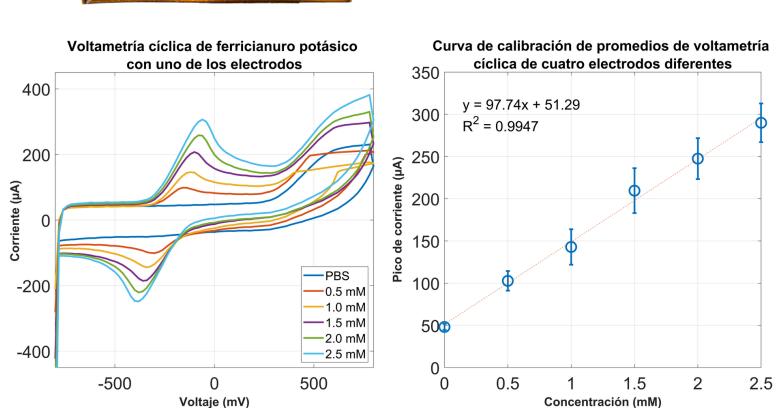
ESPECÍFICOS

- Implementar y validar la placa EVAL-AD5941ELCZ para realizar mediciones de voltametría cíclica.
- Diseñar y fabricar electrodos de grafeno inducido por láser.
- Caracterizar electroquímicamente el electrodo realizando la técnica de medición establecida, utilizando ferricianuro de potasio.
- Evaluar los electrodos para ser aplicados como un biosensor.

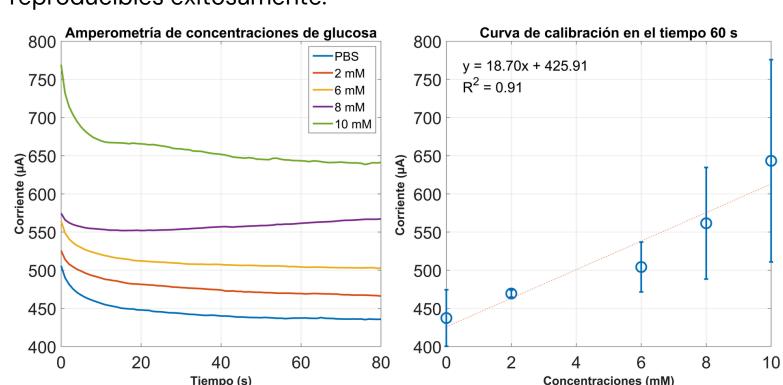
MÉTODOS Voltametría cíclica de resistencias (100, 1k 4.7k, 10k Ω) para SE0 RE0 CE0 validación de resultados de la EVALplaca AD5941ELCZ EVAL-AD5941ELCZ. Diseño y fabricación de electrodo de grafeno inducido por láser. Pruebas de SEO REO CEO voltametría cíclica y amperometría de EVAL-AD5941ELCZ distintas concentraciones de ferricianuro potásico. Inmovilización de GOx Ácido glucónico Glucosa → en la superficie del electrodo de trabajo y GOx → realización de pruebas de amperometría de

glucosa.

Electrodo→


*Figuras creadas con Biorender.com

RESULTADOS Voltametría cíclica de resistencia de 100 Ω Voltametría cíclica de resistencia de 10k Ω $\times 10^4$ 0.5 50 % error: 1.43% % error: 108% -Valor teórico Valor experimental Valor experimental -1000 1000 -1000 -500


Voltametrías cíclicas de resistencias resultaron en pendientes positivas de Voltaje vs. Corriente. Al aumentar el valor de resistencia, el porcentaje de error fue menor, debido al efecto de la resistencia interna que actúa en serie con la externa.

Se fabricaron los electrodos de grafeno inducido por láser $(24.095 \times 13.100 \text{ mm}) \text{ y se}$ aislaron los canales.

En la voltametría cíclica de las diferentes concentraciones de ferricianuro potásico (0, 0.5, 1.0, 1.5, 2.0, 2.5 mM) se observó una relación lineal en cuanto a los valores de estas con la corriente máxima resultante de cada pico de oxidación. Por lo que, al aumentar la concentración, hubo un aumento de corriente. Asimismo, las desviaciones estándar bajas indican que las pruebas son reproducibles exitosamente.

La amperometría de las distintas concentraciones de glucosa (0, 2, 6, 8, 10 mM), luego de la inmovilización de GOx, dio como resultado una relación lineal con la corriente en el punto de 60 segundos. Sin embargo, las desviaciones estándar altas son un indicio de la inestabilidad de la enzima al realizar varias pruebas.

CONCLUSIONES

- El sistema de tres electrodos, con un electrodo de trabajo basado en grafeno, fue funcional y fue aplicado como biosensor mediante amperometría.
- La voltametría cíclica con resistencias mostró que mientras el valor fuese mayor, el porcentaje de error disminuye debido al impacto de la resistencia interna de la placa, demostrando que los resultados acertados cuando más resistividad del elemento medido era más alta.
- Se fabricó un diseño de electrodo inducido por láser y se comprobó su funcionamiento usando voltametría cíclica de ferricianuro observando potásico, un aumento proporcional en los picos de corriente con cada concentración.
- Las pruebas de amperometría demostraron una relación directa aunque no tan estable entre las concentraciones de glucosa y la corriente medida a los 60 segundos. Sin embargo, el biosensor fue capaz de hacer una diferenciación entre concentraciones.

TRABAJO FUTURO

- diseño para que • Optimizar el los tres electrodos puedan creados ser completamente con grafeno inducido por láser, modificando las características del contraelectrodo electrodo de del referencia.
- Para optimizar la aplicación de biosensado, aplicar una técnica de inmovilización diferente a la adsorción, como la orientada o de enlaces covalentes. Esto haría que el bioreconocimiento elemento de estabilice por más tiempo en la superficie mediante enlaces químicos.
- Con respecto a las mediciones de glucosa, seleccionar valores de concentraciones que se aproximen más entre sí para poder asegurar que es posible diferenciarlos a pesar de ser tan parecidos y para tener más puntos de datos. Esto con el fin de dirigirlo a ser utilizado en situaciones más apegadas a la realidad.

REFERENCIAS

- 1. Ong, et al. (2023). Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021.
- 2. Settu, et al. (2021). Laser-induced graphene-based enzymatic

biosensor for glucose detection.