

Job or Customer :						
Location :						
Engineer :						
Complies with Spec	Complies with Spec Alternate Notes :					
Contractor :						
HeatLink Rep :						
Submitted By :		Date :				
Approved By :		Date :				
P.O. Number :		Date :				

Description

The main application of the HEP Isolation Heat Exchanger Panel is to provide single wall isolation between a DHW tank and a heating system. While other applications are possible, it is important to note that this panel is not a temperature control device. The secondary water temperature is wholly dependent on the temperature of the primary supply water. The HEP095P is designed for applications where there is an extremely high flow resistance in the heat source. When the panel receives a call for heat, it activates both primary and secondary pumps. The primary pump is also activated once every 24 hours, for 15 minutes, to ensure that potable water in the piping or heat exchanger is not stagnant.

The panel is pre-wired to work with the FLWSWTCH DHW priority switch (mounted externally). When using the FLWSWTCH priority switch, a flow sensor is installed in the DHW supply to the house downstream from the branch to the HEP panel. When the FLWSWTCH detects water flow, it will turn off the primary pump in the HEP panel, until such time that the DHW flow to the house falls below ~0.5 US gpm.

Technical Data

Max Ambient Temperature:	120°F (49°C)
Max Water Temperature:	200°F (93°C)
Temperature Control Method:	None
Temperature Control Range:	Dependent on heat source
	temperature
Power Supply:	110 V(ac)
Auxiliary Terminal:	Yes
DHW Priority:	Optional @ ~0.5 US gpm DHW flow
Piping:	¾" 304SS Tubing
Piping Connections:	
Material - Backplate:	Galvanized Steel
Material - Enclosure:	Powder Coated Steel

Qty	Stk. #	Heat Exchanger	Primary Circulator	Secondary Circulator	Weight
	HEP025P	Single-wall brazed plate; 3×8-12	UPS15-58RU	UPS15-58RU	30 lb (13.6 kg)
	HEP080P	Single-wall brazed plate; 3×8-30	UPS15-58RU	UPS15-58RU	32.5 lb (14.8 kg)
	HEP095P	Single-wall brazed plate; 3×8-30	UPS26-99BFC	UPS15-58RU	46.5 lb (21.1 kg)

Standards / Listings CAN/CSA-C22 No.14, UL508 cETLus

HEP - Isolation Heat Exchanger Panels Submittal - Page 2 of 4

Panel Components - HEP025P & HEP080P

- 1 Brazed Plate Heat Exchanger
- (2) Primary Pump
 - (UPS 15-58RU Composite)
- (3) Secondary Pump (UPS 15-58RU Composite)
- (4) Programmable Logic Control
 24hr Timer for Potable Applications
- (5) 24V(ac) 20VA Plug-in Transformer
- (6) 1/2" Safety Relief Valve
- (7) Pressure Gauge
- (8) Automatic Air Vent
- (9) Drain and Fill Valve

HEP Panel Performance at Different Supply Water Temperatures

	HEP025P				HEP080P					
Supply Temperature	140	150	160	170	180	140	150	160	170	180
BTUH	39,000	55,000	66,000	77,000	88,000	80,000	102,000	125,000	149,000	172,000
GPM Primary	4	4.5	4.5	4.5	4.5	8	8	8	8	8
GPM Secondary	4	5	5	5	5	8	8	8	8	8
Htg. Sys. Available ft.hd.	10	9	9	9	9	8	8	8	8	8
Htg System Temp	18	22	26	31	35	20	25	31	37	43
Differential °F										

Note: Performance data is based on water as the primary and secondary heating fluid.

HEP - Isolation Heat Exchanger Panels Submittal - Page 3 of 4

HEP Panel Performance at Different Supply Water Temperatures

	HEP095P					
Supply Temperature	140	150	160	170	180	
BTUH	96,000	115,000	140,000	165,000	190,000	
GPM Primary	13	13	13	13	13	
GPM Secondary	8	8	8	8	8	
Htg. Sys. Available ft.hd.	8	8	8	8	8	
Htg System Temp Differential °F	24	29	35	41	48	

Note: Performance data is based on water as the primary and secondary heating fluid.

HEP - Isolation Heat Exchanger Panels Submittal - Page 4 of 4

Installation

Installation must follow all of HeatLink's instructions and guidelines.

Maintenance

Maintenance must follow all of HeatLink's instructions and guidelines.

Related Documents

- HEP000P Installation, Operation, and Maintenance Manual Instructions (L6HEP000P)
- FLWSWTCH Flow Switch for DHW Priority Submittal (SUBFLWSWTCH)
- HeatLink Limited Heating Warranty