0

GENERAL INFORMATION

WOOD-KNOCKER®II+ AND PAN-KNOCKER™II+

Concrete Inserts

PRODUCT DESCRIPTION

Wood-Knocker II+ and Pan-Knocker II+ concrete inserts are installed onto forms used to support newly poured concrete floor slabs, roof slabs or walls. The concrete inserts are specifically designed to provide hanger attachments for mechanical, electrical, plumbing (MEP) and fire protection.

When the forms are stripped, the color-coded flange is visibly embedded in the concrete surface. The inserts allow the attachment of steel threaded rod or threaded bolts in sizes ranging from 1/4" to 3/4" in diameter, including a 1/4-3/8" and 3/8-1/2" and 1/4-3/8-1/2" multi version. The hex impact plate offers resistance to rotation within the concrete as a steel threaded rod or threaded bolt is being installed.

GENERAL APPLICATIONS AND USES

- Hanging Pipe and Sprinkler Systems
- HVAC Ductwork and Strut Channels
- Suspending Trapeze and Cable Trays
- Mechanical Unit Overhead Utilities
- Conduit and Lighting System
- Seismic Loading and Cracked Concrete

FEATURES AND BENEFITS

- + Fast and simple to install, low installed cost
- + Color coded by size for simple identification
- + Wood-Knocker II+ and Pan-Knocker II+ can be installed in form pours only 3.5" thick (see installation details)
- + Hex head does not rotate when set
- + Insert design allows for full thread engagement
- + Suitable for seismic and wind loading

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3657 for concrete
- Code compliant with the 2018 IBC/IRC, 2015 IBC/IRC, 2012 IBC/IRC and 2009 IBC/IRC
- Tested in accordance with ASTM E488 and ICC-ES AC446 for use in cracked and uncracked concrete under the design provisions of ACI 318 (Strength Design method)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete
- Underwriters Laboratories (UL Listed) File No. EX1289, see listing for sizes. Also UL listed and recognized for use in air handling spaces (i.e. plenum rated locations)
- FM Approvals (Factory Mutual) File No. J.I. 3059197

GUIDE SPECIFICATIONS

CSI Divisions: 03 15 19 - Cast-In Concrete Anchors and 03 16 00 - Concrete Anchors. Concrete inserts shall be Wood-Knocker II+ or Pan-Knocker II+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	1
Material Specifications	2
Installation Instructions	2
Installation Specifications	3
Reference Data (ASD)	4
Strength Design (SD)	5
Ordering Information	8

WOOD-KNOCKER II+ FORM INSERT

PAN-KNOCKER II+ FORM INSERT 'NO NAIL' VERSION OF WOOD-KNOCKER II+

ANCHOR MATERIALS

• Carbon Steel and Engineered Plastic

ROD/ANCHOR SIZE RANGE (TYP.)

 1/4" through 3/4" threaded rod including 1/4"-3/8", 3/8"-1/2" and 1/4"-3/8"-1/2" multi version

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete

WOOD-KNOCKER®II+/PAN-KNOCKER[™]II+ Concrete Inserts

MATERIAL SPECIFICATIONS

Wood-Knocker II+ and Pan-Knocker II+

Anchor Component	Component Material
Insert Body	AISI 1008 Carbon Steel or equivalent
Flange	Engineered Plastic
Zinc Plating	ASTM B 633 (Fe/Zn5) Min. plating requirements for mild service condition

Material Properties for Threaded Rod

Steel Description	Steel Specification (ASTM)	Rod Diameter (inch)	Minimum Yield Strength, $f_{\rm y}$ (ksi)	Minimum Ultimate Strength, fº (ksi)	
Standard carbon rod	A 36 or A 307, Grade C	1/4 to 3/4	36.0	58.0	
High strength carbon rod	A 193, Grade B7	1/4 to 3/4	105.0	125.0	

INSTALLATION INSTRUCTIONS

Installation Instructions for Wood-Knocker II+

Installation Instructions for Pan-Knocker II+

Position

Step 1

down.

Position insert on

formwork plastic

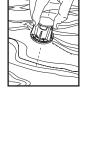
Step 2 Drive insert head down until head contacts plastic.

Drive

Prepare

Step 3 After formwork removal, remove nails as necessary (e.g. flush mounted fixtures).

Attach


Step 4 After concrete pour and cure, push threaded steel element (rod/bolt) through center of plastic seal and thread into the insert. Attach fixture as applicable (e.g. seismic brace).

Attach

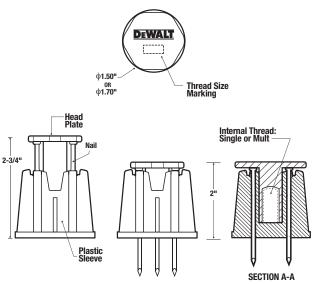
Step 4 After concrete pour and cure, push threaded steel element (rod/bolt) through center of plastic seal and thread into the insert. Attach fixture as applicable (e.g. seismic brace).

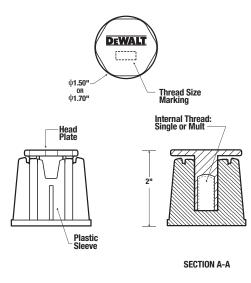

WOOD-KNOCKER®II+/PAN-KNOCKER[™]II+ Concrete Inserts

ECHANICAL ANCHORS

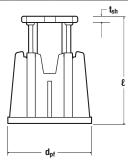
Step 2 Mount / secure insert framework (e.g. using screws)

Step 3 After formwork removal, remove screws as necessary (e.g. flush mounted fixtures).

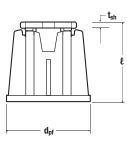




INSTALLATION SPECIFICATIONS



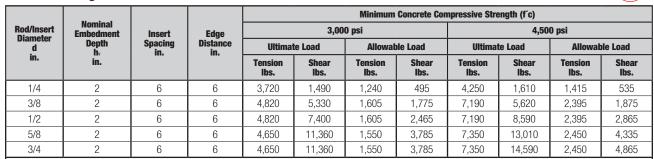
Pan-Knocker II+ Inserts for Form Pour Concrete


Wood-Knocker II+

Dimension	Units	Nominal Rod/Anchor Size												
Dimension	Units	Notation	1/4-3/8	B" Multi	1/4-:	3/8-1/2"	Multi	3/8-1/2	2" Multi	1/4"	3/8"	1/2"	5/8"	3/4"
Thread Size, UNC	TPI	-	1/4-20	3/8-16	1/4-20	3/8-16	1/2-13	3/8-16	1/2-13	1/4-20	3/8-16	1/2-13	5/8-11	3/4-10
Approx. Internal Thread Length	in.	-	3/8	7/16	9/32	3/8	1/2	9/16	9/16	3/8	5/8	11/16	15/16	1-1/8
Approx. Internal Thread Standoff from Plastic Sleeve Bottom, after setting	in.	-	1	5/16	1-3/8	7/8	5/16	1	5/16		3/8			
Plastic Sleeve Flange Diameter	in.	d _{pf}						2-3	3/8					
Plastic Sleeve Flange Thickness	in.	-						3/	16					
Overall Length, after setting	in.	l							2					
Break-off Nail Length	in.	ln		3/4										
Steel Head Plate Thickness	in.	tsh						1,	/8					

Pan-Knocker II+

Dimension	Units	Notation	Notation Nominal Rod/Anchor Size								
Dimension	Units		1/4-3/8	" Multi	1/4-3/8-1/2" Multi			3/8-1/2" Multi			
Thread Size, UNC	TPI	-	1/4-20	3/8-16	1/4-20	3/8-16	1/2-13	3/8-16	1/2-13		
Approx. Internal Thread Length	in.	-	3/8	7/16	9/32	3/8	1/2	9/16	9/16		
Approx. Internal Thread Standoff from Plastic Sleeve Bottom, after setting	in.	-	1	5/16	1-3/8	7/8	5/16	1	5/16		
Plastic Sleeve Flange Diameter	in.	dpf			-	2-3/8					
Plastic Sleeve Flange Thickness	in.	-				3/16					
Overall Length	in.	l	2								
Steel Head Plate Thickness	in.	tsh				1/8					



191

REFERENCE DATA (ASD)

ENGINEERED BY POWERS

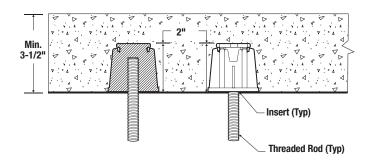
Ultimate and Allowable Load Capacities for Wood-Knocker II+ and Pan-Knocker II+ Inserts Installed in Normal-Weight Concrete^{1,2,3}

1. Allowable load capacities listed are calculated using an applied safety factor of 3.0.

2. The allowable working load must be the lesser of the insert capacity or the steel strength of the threaded rod.

3. Linear interpolation may be used to determine ultimate loads for intermediate compressive strengths.

Ultimate and Allowable Load Capacities for Wood-Knocker II+ and Pan-Knocker II+ Inserts Installed in Sand-lightweight Concrete^{1,2}


Rod/Insert	Nominal				f´c ≥ 3,	000 psi	
Diameter	Embedment Depth	Insert Spacing	Edge Distance	Ultimat	te Load	Allowat	le Load
a in.	ĥ√ in.	in.	in.	Tension Ibs.	Shear Ibs.	Tension Ibs.	Shear Ibs.
1/4	2	6	6	3,570	1,380	1,190	460
3/8	2	6	6	4,270	5,280	1,425	1,760
1/2	2	6	6	4,270	7,180	1,425	2,395
5/8	2	6	6	4,600	7,590	1,535	2,530
3/4	2	6	6	4,600	7,590	1,535	2,530

1. Allowable load capacities listed are calculated using an applied safety factor of 3.0.

2. The allowable working load must be the lesser of the insert capacity or the steel strength of the threaded rod.

3. For 1/4", 3/8" and 1/2" diameters:

When the inserts are spaced 3" center-to-center the inserts allowable tension capacity must be reduced by 25 percent and the allowable shear capacity reduced by 15 percent. When the inserts have a 3" edge distance the inserts allowable tension capacity does not require a reduction and the allowable shear capacity must be reduced by 40 percent.

Allowable Steel Strength for Threaded Rod

Anchor	Nominal		Allowable Tension		Allowable Shear			
Diameter d in.	Area of Rod in. ²	ASTM A36 Ibs.	ASTM A307 Grade C Ibs.	ASTM A193 Grade B7 Ibs.	ASTM A36 Ibs.	ASTM A307 Grade C Ibs.	ASTM A193 Grade B7 Ibs.	
1/4	0.0491	940	940	2,160	485	485	1,030	
3/8	0.1104	2,115	2,115	4,375	1,090	1,090	2,255	
1/2	0.1963	3,755	3,755	7,775	1,940	1,940	4,055	
5/8	0.3068	5,870	5,870	12,150	3,025	3,025	6,260	
3/4	0.4418	8,455	8,455	17,495	4,355	4,355	9,010	
Allowable tension =	fu (Anom) (0.33); Allowal	ble shear = fu (Anom) (0.17)			0		n	

CHANICAL ANCHORS

STRENGTH DESIGN (SD)

Wood-Knocker II+ and Pan-Knocker II+ Insert Design Information^{1,2,3,4,5,6,7,8}

WOOU-KIIOCKEI IIT AIIG I AII-KIIOCKEI IIT IIISEI	r besign n	mormation					
Design Information	Symbol	Units	1/4-inch	3/8-inch	1/2-inch	5/8-inch	3/4-inch
Insert O.D.	da (do)	in. (mm)	0.7 (18)	0.7 (18)	0.7 (18)	1.0 (25)	1.0 (25)
Insert head net bearing area	A _{brg}	in² (mm²)	1.20 (762)	1.20 (762)	1.20 (762)	1.30 (839)	1.30 (839)
Effective embedment depth	hef	in. (mm)	1.75 (45)	1.75 (45)	1.75 (45)	1.75 (45)	1.75 (45)
Minimum member thickness	h _{min}	-	3.5 (89)	3.5 (89)	3.5 (89)	3.5 (89)	3.5 (89)
Effectiveness factor for cracked concrete	kc	- (SI)	24 (10)	24 (10)	24 (10)	24 (10)	24 (10)
Modification factor for tension strength in uncracked concrete	$\Psi_{C,N}$	-	1.25	1.25	1.25	1.25	1.25
Nominal tension strength of single insert as governed by steel strength	Nsa,insert	lb (kN)	10,270 (45.7)	10,270 (45.7)	9,005 (40.1)	12,685 (56.4)	12,685 (56.4)
Nominal tension strength of single insert as governed by steel strength, for seismic loading	Nsa,insert,eq	lb (kN)	10,270 (45.7)	10,270 (45.7)	9,005 (40.1)	12,685 (56.4)	12,685 (56.4)
Nominal steel shear strength of single insert	V _{sa,insert}	lb (kN)	7,180 (31.9)	7,180 (31.9)	7,180 (31.9)	9,075 (40.4)	9,075 (40.4)
Nominal steel shear strength of single insert, for seismic loading	Vsa,insert,eq	lb (kN)	7,180 (31.9)	7,180 (31.9)	7,180 (31.9)	9,075 (40.4)	9,075 (40.4)

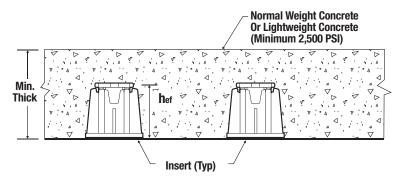
For SI: 1 inch = 25.4 mm, 1 inch² = 635 mm², 1 pound = 0.00445 kN, 1 psi = 0.006895 MPa. For pound-inch unit: 1 mm = 0.03937 inches.

1. Concrete must have a compressive strength f'c of 2,500 psi minimum.

2. Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D for cast-in headed anchors.

3. Strength reduction factors (ø) for the inserts are based on ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.65 for tension and 0.60 for shear; values correspond to brittle steel elements. The value of ø applies when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ø must be determined in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3.

4. The concrete tension strength of headed cast-in specialty inserts shall be calculated in accordance with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.


5. Insert O.D. is the outside diameter of the headed insert body.

6. Only the largest size of threaded rod or bolt for the inserts (e.g. 1/2-inch diameter for 3/8- & 1/2-inch insert) multi insert must be used for applications resisting shear loads.

7. Minimum spacing distance between anchors and minimum edge distance for anchors shall be in accordance with ACI 318-14 17.7 or ACI 318-11 D.8.

 The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod or bolt strength in tension, shear, and combined tension and shear, as applicable. See Steel Design Information table for common threaded rod elements.

Wood-Knocker II+ and Pan-Knocker II+ Insert Installed in Soffit of Form Pour Concrete Floor and Roof Assemblies

Concrete Inserts

www.DEWALT.com

Specifications And Physical Properties Of Common Carbon Steel Threaded Rod Elements¹

Threaded Rod Specification		Units	Min. Specified Ultimate Strength, Futa	Min. Specified Yield Strength 0.2 Percent Offset, Fya	Futa — Fya	Elongation Minimum Percent [®]	Reduction Of Area Min. Percent	Related Nut Specification ⁶	
	ASTM A36/A36M ² and F1554 ³ Grade 36	psi (MPa)	58,000 (400)	36,000 (248)	1.61	23	40 (50 for A36)	ASTM A194 / A563 Grade A	
Carbon Steel	ASTM F1554 ³ Grade 105	psi (MPa)	125,000 (862)	105,000 (724)	1.19	15	45	ASTM A194 /	
	ASTM A193/A193M ⁴ Grade B7	psi (MPa)	125,000 (860)	105,000 (720)	1.19	16	50	A563 Grade DH	

For SI: 1 inch = 25.4 mm, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Inserts may be used in conjunction with all grades of continuously threaded carbon steels (all-thread) that comply with code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series.

2. Standard Specification for Carbon Structural Steel.

3. Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength.

4. Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High Temperature or High Pressure Service and Other Special Purpose Applications.

5. Based on 2-inch (50 mm) gauge length except ASTM A193, which are based on a gauge length of 4d (drod).

6. Where nuts are applicable, nuts of other grades and style having specified proof load stress greater than the specified grade and style are also suitable.

Steel Design Information For Common Threaded Rod Elements Used With Concrete Inserts^{1,2,3,4}

Design Information	Symbol	Units	1/4-inch	3/8-inch	1/2-inch	5/8-inch	3/4-inch
Threaded rod nominal outside diameter	drod	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)
Threaded rod effective cross-sectional area	Ase	in² (mm²)	0.032 (21)	0.078 (50)	0.142 (92)	0.226 (146)	0.335 (216)
Nominal tension strength of ASTM A36 threaded rod as governed by steel strength	Nsa,rod,A36	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.3)
Nominal seismic tension strength of ASTM A36 threaded rod as governed by steel strength	Nsa,rod,A36,eq	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.4)
Nominal tension strength of ASTM A193, Gr. B7 threaded rod as governed by steel strength	N _{sa,rod,B7}	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)
Nominal seismic tension strength of ASTM A193, Gr. B7 threaded rod as governed by steel strength	Nsa,rod,B7,eq	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)
Nominal shear strength of ASTM A36 threaded rod as governed by steel strength	V _{sa,rod,A36}	lb (kN)	1,115 (4.9)	2,715 (12.1)	4,940 (22.0)	7,865 (35.0)	11,660 (51.9)
Nominal seismic shear strength of ASTM A36 threaded rod as governed by steel strength	Vsa,rod,A36,eq	lb (kN)	780 (3.5)	1,900 (8.4)	3,460 (15.4)	5,505 (24.5)	8,160 (36.3)
Nominal shear strength of ASTM A193, Gr. B7 threaded rod as governed by steel strength	Vsa,rod,B7	lb (kN)	2,385 (10.6)	5,815 (25.9)	10,640 (7.3)	16,950 (75.4)	25,085 (111.6)
Nominal seismic shear strength of ASTM A193, Gr. B7 threaded rod as governed by steel strength	Vsa,rod,B7,eq	lb (kN)	1,680 (7.5)	4,095 (18.2)	7,455 (34.2)	11,865 (52.8)	17,590 (78.2)

For SI: 1 inch = 25.4 mm, 1 pound = 0.00445 kN, 1 in² = 645.2 mm². For pound-inch unit: 1 mm = 0.03937 inches.

1. Values provided for steel element material types based on minimum specified strengths and calculated in accordance with ACI 318-11 Eq. (D-29).

2. $\phi_{N_{sa}}$ shall be the lower of the $\phi_{N_{sa,red}}$ or $\phi_{N_{sa,reset}}$ for static steel strength in tension; for seismic loading $\phi_{N_{sa,eq}}$ shall be the lower of the $\phi_{N_{sa,rest,eq}}$ or $\phi_{N_{sa,rest,eq}}$

3. ϕ Vsa shall be the lower of the ϕ Vsared or ϕ Vsarisert for static steel strength in tension; for seismic loading ϕ Vsared shall be the lower of the ϕ Vsared or ϕ Vsarisert.eq.

4. Strength reduction factors shall be taken from ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for steel elements. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the threaded rod are taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements. The value of ø applies when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used in accordance with ACI 318-11 T.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ø must be determined in accordance with ACI 318-11 D.4.4.

Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+ Insert Installed in the Soffit of Form Poured Concrete and Roof Assemblies - Uncracked Concrete^{1,2,3,4,5,6}

		Minimum Concrete Compressive Strength									
Nominal Anchor	Embed. Depth her (in.)	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,000 psi					
Diameter		ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)	∲Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	ØVn Shear (Ibs.)				
1/4	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425				
3/8	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425				
1/2	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425				
5/8	1-3/4	2,665	2,665	3,075	3,075	3,765	3,765				
3/4	1-3/4	2,665	2,665	3,075	3,075	3,765	3,765				

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+Insert Installed in the Soffit of Form Poured Concrete and Roof Assemblies - Cracked Concrete^{1,2,3,4,5,6}

		Minimum Concrete Compressive Strength										
Nominal Anchor Diameter	Embed. Depth	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,000 psi						
	h _{ef} (in.)	∲Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	ØVn Shear (Ibs.)					
1/4	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445					
3/8	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445					
1/2	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445					
5/8	1-3/4	2,130	2,130	2,460	2,460	3,015	3,015					
3/4	1-3/4	2,130	2,130	2,460	2,460	3,015	3,015					
		,		,	2,460	3,015	3,015					

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 🔳 - Steel Strength Controls

- 1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:
 - c_{a1} is greater than or equal to the critical edge distance, $c_{ac}.$
 - Ca2 is greater than or equal to 1.5 times Ca1.
- 2- Calculations were performed following methodology in ACI 318-14 Chapter 17 or ACI 318-11 Appendix D. The load level corresponding to the failure mode listed [steel strength of insert (Nsa,msert, Vsa,msert), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (Nsa,rod, Vsa,rod), the lowest load level controls.
- 3- Strength reduction factors shall be taken from ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.70 for tension and 0.60 for shear; values correspond to brittle steel elements.
- 4- Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14 Chapter 17 or ACI 318-11 Appendix D and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

Tension and Shear Design Strength of Steel Elements (Steel Strength)^{1,2,3,4}

	Steel Elements - Threaded Rod				
Nominal Rod Diameter (in. or No.)	ASTM A36 and ASTM F1554 Grade 36		ASTM A193 Grade B7 and ASTM F1554 Grade 105		
	ØNsa.rod Tension (lbs.)	ØVsa,rod Shear (Ibs.)	ØNsarod Tension (Ibs.)	ØVsa,rod Shear (Ibs.)	
1/4	1,390	720	3,000	1,550	
3/8	3,395	1,750	7,315	3,780	
1/2	6,175	3,210	13,315	6,915	
5/8	9,835	5,115	21,190	11,020	
3/4	14,550	7,565	31,405	16,305	
- Steel Strength Controls					

Steel Strength Controls

1. Steel tensile design strength according to ACI 318 Appendix D and ACI 318 Chapter 17, ϕ Nsa = $\phi \cdot$ Ase, N \cdot futa

2. The tabulated steel design strength in tension for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pullout design strength to determine the controlling failure mode, the lowest load level controls.

3. Steel shear design strength according to ACI 318 Appendix D and ACI 318 Chapter 17, ϕ Nsa = $\phi \bullet 0.60 \bullet A_{se,N} \bullet f_{uta}$

4. The tabulated steel design strength in shear for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pryout design strength to determine the controlling failure mode, the lowest load level controls

REV. E

ECHNICAL GUIDE - MECHANICAL ANCHORS © 2019 DEWALT

ORDERING INFORMATION

Wood-Knocker®II+ Form Insert (UNC internal thread)

Cat No.	Description	Color Code	Std. Pack	
PFM2521100	1/4" Wood-Knocker II+	Brown	100	
PFM2521150	3/8" Wood-Knocker II+	Green	100	
PFM2521200	1/2" Wood-Knocker II+	Yellow	100	
PFM2521250	5/8" Wood-Knocker II+	Red	100	
PFM2521300	3/4" Wood-Knocker II+	Purple	100	
PFM2521350	3/8-1/2" Wood-Knocker II+ Multi	Gray	100	
PFM2521438	1/4-3/8" Wood-Knocker II+ Multi	White	100	
PFM253143812	1/4-3/8-1/2" Wood-Knocker II+ Multi	Aqua	100	
Inserts are color coded to easily identify location and diameter of the internally threaded coupling.				

Pan-Knocker II+ Form Insert (UNC internal thread) 'No nail' version of Wood-Knocker II+

Cat No.	Description	Color Code	Std. Pack	
PFM2521100NN	1/4" Pan-Knocker II+	Brown	100	
PFM2521150NN	3/8" Pan-Knocker II+	Green	100	
PFM2521200NN	1/2" Pan-Knocker II+	Yellow	100	
PFM2521250NN	5/8" Pan-Knocker II+	Red	100	
PFM2521300NN	3/4" Pan-Knocker II+	Purple	100	
PFM2521350NN	3/8-1/2" Pan-Knocker II+ Multi	Gray	100	
PFM2521438NN	1/4-3/8" Pan-Knocker II+ Multi	White	100	
PFM253143812NN	1/4-3/8-1/2" Pan-Knocker II+ Multi	Aqua	100	
Pan-Knocker II+ Form Inserts must be mounted (e.g. screwed) to the concrete form work (screws not included).				

WOOD-KNOCKER®II+/PAN-KNOCKER^{III+}II+ Concrete Inserts

ECHANICAL ANCHORS