GENERAL CATALOG

Mueller Steam Specialty

C

TABLE OF CONTENTS

SPECIAL	APPROVALS	
Fireline,	ABS, API and Special Specifications	. 2

TEMPLATES FOR DRILLING

150 lb., 300 lb. and 600 lb. steel standar	ds 4
--	------

FLANGE BOLTING DATA

"Y" TYPE STRAINERS

```
Cast Iron, Bronze, Cast Steel, Stainless Steel..... 6
```

BASKET TYPE STRAINERS

Cast Iron, Bronze	Cast Steel, Stainless	Steel 9
-------------------	-----------------------	---------

DUPLEX STRAINERS

REVOLUTIONARY BALL - PLEX™	

SPECIAL STRAINERS

Cast Iron,	Bronze	 	12

FABRICATED STRAINERS

QUICK ACTING LINE BIINGS	13
PUMP PROTECTION	
Control-Chek [®] , Suction Diffuser	15

SILENT CHECK VALVES Compact Wafer & Wafer Globe Type
SURE CHECK® VALVES

Dauh		lina	Charle	Valves			22
Doub	ie D	ISC	CHECK	vaives	 	 	 23

BUTTERFLY VALVES

Wafer	Style,	Full 8	i Semi	Lug	Style.	 	25

ABOUT MUELLER STEAM SPECIALTY

Beginning in New York City as a small specialty manufacturer servicing the valve industry, Mueller Steam Specialty incorporated in 1956 to start manufacturing pipeline strainers. Since then, the company and its product offering have expanded dramatically. The company moved to North Carolina in 1972 and due to its continued growth, moved again in 1992 to a new and larger facility in St. Pauls, North Carolina. There are now over 300,000 square feet of ISO 9001:2000 registered manufacturing space devoted to Mueller's various product lines. In addition to a full range of pipeline and specialty strainers, the company now manufactures a broad offering of check valves and butterfly valves.

Mueller Joins the Watts Family

In December 2005, Mueller became a part of the Watts Water Technologies, Inc. family of companies. The resources and support that Watts has added to Mueller have enabled the company to consolidate previous efforts while at the same time plan for future growth and expansion in products and services.

Mueller Today

10

Today, Mueller Steam Specialty is the world's largest supplier of strainers and the number one provider of specialty products serving the valve industry. While the company has seen many changes, the dedication to quality, service and delivery remains the same. As always, Mueller Steam Specialty brand strainers and valves will continue to be the premier products of their kind in the marketplace.

TRADEMARKS:

- Viton® is a trademark of DuPont Performance Elastomers, L.L.C.
- Teflon[®] is a trademark of E. I du Pont de Nemours and Company Corporation
- Rilsan® is a trademark of Arkema Corporation
- Monel[®] is a trademark of Inco Alloys International, Inc.
- Inconel[®] is a trademark of Inco Alloys International, Inc.
- Stellite[®] is a trademark of Deloro Stellite Holdings Corporation
- Kynar[®] is a trademark of Arkema, Inc.
- Halar® is a trademark of Ausimont USA, Inc.
- Hypalon[®] is a trademark of Dupont Performance Elastomers L.L.C.

How To Order

11 Duplex Strainers

17 CHEXTER[®] Check Valve

22 Silent Check Valves

24 Sure Check® Valves

- 26 Butterfly Valves
- 28 LOCXEND®

Ordering Information

Important: To assist you in ordering the proper product for your application, the following information is necessary: operating pressure, temperature, flow rates and/or velocity and the type of service used.

SPECIAL APPROVALS - FIRE LINE, ABS, SPECIAL SPECIFICATIONS, AND API

STRAINERS

APPROVAL TYPE	MODEL	SIZE		DESCRIPTION
		in.	mm	
FM	595	4, 6, 8	100, 150, 200	Cast Iron body, Class 125, basket strainer, flanged ends
UL	595	4, 5, 6, 8, 10, 12	100, 125, 150, 200, 250, 300	Cast Iron body, Class 125, basket strainer, flanged ends
UL	911U	21⁄2, 3, 4, 5, 6, 8, 10, 12	65, 80, 100,125, 150, 200, 250, 300	Cast Iron body, Class125, "Y" strainer, flanged ends
UL	911U	21/2, 3, 4, 5, 6, 8, 10, 12	65, 80, 100, 125, 150, 200, 250, 300	Cast Steel body, Class 150, "Y" strainer, flanged ends

SURE CHECK VALVES

APPROVAL Type	MODEL		SIZE	DESCRIPTION
		in.	тт	
FM	71	2, 2½, 3, 4, 5, 6, 8, 10, 12, 14, 16	50, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400	Cast Iron body, Class 125, wafer type double disc check valve
FM	72	2, 2½, 3, 4, 5, 6, 8, 10, 12, 14	50, 65, 80, 100, 125, 150, 200, 250, 300, 350	Bronze, Carbon or Stainless Steel, Class 150, 200, 250, 300, 350 wafer type double disc check valve
FM	74	2, 2½, 3, 4, 5, 6, 8, 10, 12, 14	50, 65, 80, 100, 125, 150, 200, 250, 300, 350	Bronze, Carbon or Stainless Steel, Class 300, wafer type double disc check valve
UL	71U	4, 6, 8, 10, 12	100, 150, 200, 250, 300	Cast Iron body, Class 125, wafer type double disc check valve

ABS TYPE APPROVED STRAINERS

Includes all Mueller Steam Specialty "Y" strainers, basket strainers, duplex strainers, check valves & rubber seated butterfly valves. See ABS web site for detail: WWW.EAGLE.ORG/TYPEAPPROVAL/CONTENTS.HTML

SPECIAL SPECIFICATIONS

ASTM F1199 Cast and Welded Pipeline Strainers - "Y" and basket strainers ASTM F1200 Fabricated Strainers

ΑΡΙ

- Mueller Steam Specialty Sure Check Valves conform to API 594, API 598 & 6D.
- Mueller Steam Specialty rubber seated butterfly valves conform to API 609 and MSS SP 67.
- All Mueller Steam Specialty standard butterfly valves conform to MSS SP 25 and MSS SP 55.

PED

• Mueller Steam Specialty has PED (Pressure Equipment Directive) approval for pipeline strainers and check valves.

All Strainers, Check Valves and Butterfly Valves can be modified to meet many customers special specifications or requirements. Consult factory for more information.

SPECIAL APPROVALS - MILITARY SPECIFICATIONS

"Y" STRAINERS

SPECIFICATION	MODEL	DESCRIPTION
Mil-S-002953C: Class A, B, D	582, 764/WE, 766M/WE, 862/BC, 864M	"Y" type, 3" & below, 600# & 1500# flanged, socket weld, or butt weld end connection, bolted cover
WW-S-2739: Type 1	11M	"Y" type, iron body, screwed, bronze blow off plug
WW-S-2739: Type 2	758	"Y" type, iron body, flanged, bronze blow off plug
Mil-S-21427A	764/WE,	"Y" type main steam line, drilled screen, X-Ray, magnaflux, 4" & above,
	766M/WE	600# & 1500# flanged, socket weld, or butt weld end connection
Mil-B-24480	851M, 852	"Y" type, bronze or nickel aluminum bronze body material, sea water strainer
# 810-8441499 Rev J (NAVSHIPS)	352 1/2	"Y" type, bronze body, Silver brazing ends

BASKET STRAINERS

SPECIFICATION	MODEL	DESCRIPTION
Mil-S-13789A	125F*	Basket strainer, iron body, flanged, large capacity, surge test, flanged to grooved nipples often required. The specification also describes 250# iron, 150#, 300# and 600# steel
Mil-B-24480	165, 125, 125F	Basket strainer, bronze or nickel aluminum bronze body, screwed or Flanged ends, Class 125 - 300, sea water strainer

DUPLEX STRAINERS

SPECIFICATION	MODEL	DESCRIPTION
Mil-S-17849E	690/790 Series	Pipe Line Duplex Strainers, all models can meet this specification

SILENT CHECK VALVES

SPECIFICATION	MODEL	DESCRIPTION
Mil-V-18436E	See Description	All Mueller Steam Specialty Silent Check Valves - consult factory

* All Strainers, Check Valves and Butterfly Valves can be modified to meet many customers special specifications or requirements. Consult factory for more information.

TEMPLATES FOR DRILLING -FIRE LINE, ABS, SPECIAL SPECIFICATIONS, AND API

150, 300 AND 600 POUND STEEL STANDARDS

In. mm org BUIDS 10 15 1/2 31/2 7/4 11/4 22/4 1 2 1 2 1 1/4 2 1/4 2 21/4 1/4 2 21/2 2 1/4 1/4 2/4 1/4 2/2 2/4 1/4 1/2 2/1 2/1 2/1 2/2 2/					FU		SI		SIANDA	nD3		
Y2 15 Y2 Y6 Y6 Y7 Y7<	CLASS			Α	В	C	D	E	OR	BOLTS OR	F	G
Image: Second				14	21/	7/	13/.	03/			21/	137
I 25 1 44/k Ye 2/k 3/k 4 Ye 2/k 2/k 3/k 4 Ye 2/k 3/k 4/k 3/k 2/k 3/k <							178 111/40					
IVA 32 IVA 44 Vb 22/2 24/2 2 50 2 6 Vb 37/6 4 Vb 22/2 22/2 3 3 3 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 </td <td></td>												
IV: 40 IV: 5 9/m 27/m 37/m 4 4 1/m 2/m 2/m 2/m 2/m 2/m 37/m 4/m 4/m 5/m 37/m 4/m 5/m 37/m 4/m 5/m 37/m 4/m 5/m 37/m 37/m </td <td></td>												
PIOC 2 6 9/a 39/a 43/a 4 4 9/a 31/a 21/a 3 80 3 71/a 9/a 5 6 4 9/a 31/a 21/a 21/a 31/a 21/a 31/a 31/a 21/a 31/a 31/a 21/a 31/a												
Pice Pice <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		-										
Image: Second state Image: Second state <thimage: second="" state<="" th=""> Image: Second state</thimage:>												
900 4 31/2 81/2 81/2 7 8 9/8 3/2 3 4 100 4 9 9/16 62/16 7/2 8 9/8 3/2 3 6 126 6 10 11/4 11/8 8/2 8 9/4 3/4 3/4 3/4 6 150 6 11 1 8/2 9/2 8 3/4 4/4 3/4 10 250 10 16 1/18 10/4 11/4 15 17 12 1/4 3/2 2/2 </td <td></td>												
Pin Bin Bin <td>m</td> <td></td>	m											
Sign 5 125 5 10 1% no 7% no 8½ 8 34 34 3 6 150 6 11 1 8½ 9½ 8 34 34 34 10 250 10 16 13% 11% 18 74 44/4 34/4 10 250 10 16 13% 11% 15% 11% 11% 12 74 44/4 34/4 14 350 13/4 21 11% 15% 22 44/4 12 1 5/4 44/4 16 400 15/4 23/4 21/4 18/4 12 1 5/4 44/4 20 500 13/4 21/4 21/4 21/4 21/4 4/4 4/4 32/4 32/4 32/4 32/4 32/4 32/4 32/4 32/4 32/4 32/4 32/4 32/4 32/4 32/4 32/4	_											
6 180 6 11 1 8/2 9/2 8 9/4 4 3/4 4/4 3/4 10 250 10 16 19/6 11/4 12 7/6 44/4 3/4 12 300 12 19 1/4 15 17 12 7/6 44/4 3/4 14 350 13/4 21 12/4 18/1 18/2 21/4 16 1 5/2 4/2 16 400 15/4 23/2 1/2 11/4 16 1/2 6 4/4 4/2 20 500 19/4 27/7 11/7 25 1/4 6/4 5 2 1/4 7/4 27 2 2 3/4 4 5/2 2 2 2 3/2 2 1/2 2 3 2 2 3 2 2 3 2 3 2 3 2 2 <	0											
8 200 8 13/2 11/8 11/8 11/8 3/4 41/4 31/4 <td><u>ח</u></td> <td></td>	<u>ח</u>											
ID 250 10 16 13/s 12/s 14/s 12 7/s 43/s 33/s 12 300 12 19 11/s 15 17 12 7/s 43/s 33/s 14 350 131/s 21 13/s 11/s 16 15/s 43/s 16 400 15/s 23/s 17/s 18/s 21 22/s 16 11/s 6 44/s 20 500 19/s 27/s 17/s 25/s 20 11/s 6/s 3 21/s 22/s 1 7/s 3 21/s 21/s 21/s 22/s 2 3/s 4 1/s 3 21/s	~											
12 300 12 19 1½ 15 17 12 ½ 4¾ 3¾ 14 350 13¼ 21 1½ 16¼ 18¾ 12 1 5½ 4¼ 16 400 15½ 23½ 16% 18½ 21¼ 16 1 5½ 4½ 18 450 17¼ 25 1½ 21¼ 25 20 1¼ 6 4¼ 20 500 19¼ 27½ 1½ 23½ 20 1¼ 7 5½ 12 15 12 3½ 916 1½ 23½ 4 1½ 3 2¼ 14 32 14¼ 5¼ 3½ 4 1½ 3½ 4 1½ 3½ 2½ 1½ 1½ 3½ 4 3½ 2½ 1½ 1½ 1½ 3½ 4 3½ 2½ 3½ 2½ 3½ 2½ 3½ <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
14 350 13/4 21 1% 16/4 18% 12 1 5% 4/4 16 400 15/4 23/2 17/16 18% 21/4 16 1 5% 24/4 20 500 19/4 27/2 11% 82 25 20 11/6 6/4 5 24 600 23/4 32 17/8 23/2 20 11/4 5/4 5/2 3/4 20 3/4 4% 5% 11% 3/4 4 5% 3 2/4 1 25 1 4% 5% 11% 3/4 4 5% 3 2/4 1/2 40 11/2 6% 3/4 2/2 3/4 4 3/2 2/4 2 250 2 6% 3/4 4 3/2 2/4 3/4 4/4 3/2 2/4 4/4 3/4 3/2 2/4 4/4												
16 400 15¼ 23½ 1½% 18½ 21¼ 16 1 5½ 4½ 18 450 17¼ 25 1½% 21 22¼ 16 1¼ 6 4½ 20 500 19¼ 27¼ 1½% 21½ 20 1¼ 7 5½ 12 15 ½ 3¼ 9-16 1½ 2½ 20 1¼ 7 5½ 14 25 1 4½% 2½% 4 ½ 3 2½ 14 32 1¼ 5¼ 2½ 3½ 4 ½% 3 2½ 14 32 1¼ 5¼ 2½ 3½ 4 3 3 2½ 14 40 1½% 2½% 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3<												
IB 450 17/4 25 19/16 21 223/4 16 11/6 6 44/4 20 500 19/4 27/2 11/8 23 20 11/6 6/4 5 24 600 23/4 32 17/8 27/4 29/2 20 11/4 7 57/2 1/2 15 1/2 33/4 9-16 13/8 29/8 4 1/2 21/2 2 3/4 20 3/4 4/6 1/4 9/8 3/2/4 1/4 5/8 3 21/2 3 3 3 3 3 3 3												
20 500 19¼ 27½ 11¼s 23 25 20 11¼s 61¼s 5½ 24 600 23¼ 32 11½s 27¼ 29½2 20 11¼s 7 5½ 2 3 4 4 5 3 2 2 2 2 2 2 2 3 4 4 3 3 3 3 3 4 3												
24 600 23¼ 32 1½ 27¼ 29½ 20 1¼ 7 5½ ½ 15 ½ 3¾ 9-16 1¾ 2½ 4 ½ 2 2½ 14 20 ¾ 4% ½ 3 2½ 1 2 2 3½ 4 ½ 3 2½ 14 25 1 4½ 5¼ 3½ 2 3½ 4 ½ 3 2½ 14 32 1½ 6½ 3½ 4 3½ 3½ 2½ 2 50 2 6½ 7½ 3½ 5 5% 8 34 4 3½ 2½ 2 50 2 6½ 7½ 14 8 34 4 3½ 3½ 2½ 2½ 2½ 2½ 2½ 2½ 1½ 2½ 2½ 2½ 1½ 1½ 2½ 2½ 2½												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						5/8			4			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									4			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		11/4		1 1/4								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			40	1 ½	6 ¹ /8	¹³ /16	27/8		4		3 ¹ / ₂	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2 ¹ / ₂	65	2 ¹ / ₂	7 ½	1	4 ¹ / ₈	51/8	8		4	3 1/4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				3	8 ¹ / ₄	1 ¹ /8				3/4	4 ¹ / ₄	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>n</u>		95	3 ¹ / ₂	9		5 ¹ / ₂	71/4				31/2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	100	4	10		6 ³ /16	71/8	8	3/4	4 ¹ / ₂	33/4
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0	5	125	5	11	1 ³ /8			8	3/4	4 ³ / ₄	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	8				12 ¹ / ₂	17/16	81/2		12	3/4	43/4	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		8	200	8	15	15⁄8	105/8	13	12	7/8	5 ½	4 ¹ / ₂
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10	250	10	17 ¹ / ₂	11/8	12 ³ /4	15¼	16	1	6 ¹ / ₄	5 ¹ /4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	300	12	20 ½		15	173⁄4	16	1 ½	6 ³ / ₄	5 ½
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		14	350	13 ¼	23	2 ¹ / ₈	16 ¹ / ₄	20 ¹ / ₄	20	1 ½	7	6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		16	400	15¼	25 ¹ / ₂	2 ¹ / ₄	18 ½	22 ¹ / ₂	20	11⁄4	7 ¹ / ₂	6 ¹ /4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		18	450	17	28	2 ³ /8	21	24 ³ / ₄	24	1 1/4	73/4	6 ½
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		20	500	19	30 ½		23	27	24		8 ¹ / ₄	63/4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		24	600	23	36	2 ³ /4	27 ¹ / ₄	32	24	1 ½		7 ³ /4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			15	1/2	33⁄4		13/8	25/8	4		3	2 ³ /4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	25	1	41/8	¹¹ /16	2	3 ¹ / ₂	4	5/8	3 ¹ / ₂	3 ¹ / ₄
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			32		5¼	¹³ /16		37/8			33⁄4	31/2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			61/8	7/8						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	50									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					8 ¹ / ₄				8			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	щ											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-										5 ½
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ö											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12							20		8 ³ / ₄	8 ¹ / ₂
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-		143/4	27	3	18 ½	233/4			10	
24 600 22 37 4 27 ¹ / ₄ 33 24 1 ⁷ / ₈ 13 12 ³ / ₄			450				21		20			10½
		-										
								33	24	11/8	13	12 ³ /4

Dimensions in inches except where noted. 400 lb., 900 lb., 1500 lb. and 2500 lb. measurements on application.

FACING

Unless otherwise ordered, 150 and 300 Pound Steel Flanged Strainers are regularly furnished with a ¹/₁₆" high raised face.

The thickness of flange dimension (dimension "C") includes the $\frac{1}{16}$ " high raised face.

150 and 300 Pound F = Length of stud G = Length of machine bolt

BOLT HOLES

Bolt holes are drilled 1/8" larger than the diameter of the bolt.

Drilling templates are in multiples of four, so that valves or fittings may be turned to face in any quarter when installed. Bolt holes are drilled to straddle the center-line unless otherwise ordered.

The bolt holes are spot faced.

BOLT AND STUD LENGTHS

The lengths indicated as dimensions F and G in the above table apply for flanged joints made up of combinations of 150lb or 300lb valves, fittings, or companion flanges with 1/16" high raised faces.

Stud Length "G" also applies for Tongue to Groove Flanged Joint.

600 Pound

F = Male to Male Flanged Joint G = Male to Female Flanged Joint

FACING

600-Pound Steel Strainers are regularly furnished with 1/4" high large male face. The thickness of flange dimension (dimension "C") does not include the 1/4" high large male face.

SPOT FACING

The bolt holes are spot faced.

BOLT HOLES

Bolt holes are drilled 1/8" larger than the diameter of the bolt.

BUTTERFLY VALVE FLANGE BOLTING DATA

WAFER: 51 & 87

BFV	SIZE	ITEM	SIZE	LEN	GTH	QUANTITY
in.	тт			in.	тт	
2 & 2 ½	50 & 65	Bolt & Nut	5% - 11 UNC	41⁄4	114	4
3	80	Bolt & Nut	5% - 11 UNC	43⁄4	121	4
4	100	Bolt & Nut	5% - 11 UNC	5	127	8
5&6	125 & 150	Bolt & Nut	3⁄4 - 10 UNC	5 ½	140	8
8	200	Bolt & Nut	3⁄4 - 10 UNC	6	152	8
10	250	Bolt & Nut	7∕8 - 9 UNC	6 ³ ⁄ ₄	171	12
12	300	Bolt & Nut	⅔ - 9 UNC	7	178	12
14	350	Bolt & Nut	1 - 8 UNC	8	203	12
16	400	Bolt & Nut	1 - 8 UNC	8 ½	216	16
18	450	Bolt & Nut	1½ - 7 UNC	9 ¹ ⁄ ₄	235	16
20*	500	Cap Screw	11⁄8 - 7 UNC	3	76	8
		Bolt & Nut	1½ - 7 UNC	10	254	16
24*	600	Bolt & Nut	1¼ - 7 UNC	11¾	298	16
		Cap Screw	1¼ - 7 UNC	3 ½	89	8

BOLT & NUT

FULL LUG: 52 & 88

BFV SIZE		ITEM	SIZE	LEN	GTH	QUANTITY
in.	тт			in.	тт	
2	50	Cap Screw	5% - 11 UNC	11⁄4	32	8
2½ & 3	65 & 80	Cap Screw	5% - 11 UNC	1½	38	8
4	100	Cap Screw	5% - 11 UNC	1½	38	16
5	125	Cap Screw	3⁄4 - 10 UNC	1¾	44	16
6	150	Cap Screw	¾ - 10 UNC	2	51	16
8	200	Cap Screw	3⁄4 - 10 UNC	2 ¹ / ₄	57	16
10	250	Cap Screw	⅔ - 9 UNC	2 ½	64	24
12	300	Cap Screw	⅔ - 9 UNC	2 ½	64	24
14	350	Cap Screw	1 - 8 UNC	3	76	24
16	400	Cap Screw	1 - 8 UNC	3	76	32
18	450	Cap Screw	1½ - 7 UNC	31⁄2	89	32
20	500	Cap Screw	1½ - 7 UNC	31⁄2	89	40
24	600	Cap Screw	1¼ -7 UNC	3¾	95	40

CAP SCREW

SEMI LUG: 53

BFV SIZE		ITEM	SIZE	LEN	GTH	QUANTITY
in.	тт			in.	тт	
2	50	Cap Screw	5% - 11 UNC	11⁄4	32	8
2 ½ & 3	65 & 80	Cap Screw	5⁄8 - 11 UNC	1½	38	8
4	100	Cap Screw	5% - 11 UNC	13⁄4	44	8
		Bolt & Nut	5⁄8 - 11 UNC	5	127	4
5&6	125 & 150	Cap Screw	3⁄4 - 10 UNC	13⁄4	44	8
		Bolt & Nut	3⁄4 - 10 UNC	5 ½	140	4
8	200	Cap Screw	3⁄4 - 10 UNC	2 ¹ ⁄ ₄	57	8
		Bolt & Nut	3⁄4 - 10 UNC	6	152	4
10	250	Cap Screw	⅔ - 9 UNC	2 ½	64	8
		Bolt & Nut	⅓ - 9 UNC	6¾	171	8
12	300	Cap Screw	⅔ - 9 UNC	2 ½	64	8
		Bolt & Nut	⅓ - 9 UNC	7	178	8

DRILLED GUIDE LUG

STUD (OPTIONAL)

All thread sizes are UNC threads. All dimensions in inches.

Note: When using stud rod, add nut thickness plus 1/2" to length shown in table.

* Model #51 guide lugs have a blind tapped hole on each side requiring cap screws.

TYPE STRAINERS

Mueller Steam Specialty supplies customers world-wide with all of their requirements for "Y" Strainers. Whether the need is for a simple low pressure cast iron threaded strainer or a large, high pressure special alloy unit with a custom cap design, we have the "Y" strainers that fit the application.

We maintain a large stock of both standard and special sizes and materials. This stock includes end connections of threaded, flanged, socket weld, butt weld, solder, silbraze and grooved ends. We also have units with screwed caps, bolted caps, hinge type covers and swing type clamp covers.

Pressure is not a problem for Mueller Steam Specialty. "Y" strainers are available for pressures from ANSI Class 125 through Class 2500 and higher.

All of these strainers are available in a wide variety of materials. Units are maintained in stock with standard materials such as:

- Cast Iron
- 316 SS ٠
- Monel ٠
- Bronze
- 304 SS
- 316L SS Hastellov
 - Carbon Steel

Ductile Iron

Alloy 20

MODEL 11M

CLASS 250

Cast Iron - NPT Ends, Screwed Cap

- Size: ¹/₄" 4" (8 100mm)
- 250psi WSP @ 400°F
- 17 bar @ 204°C
- 400psi WOG @ 150°F
- 27 bar @ 65°C

MODEL 351M **CLASS 125**

- Bronze NPT, Screwed Cap
- Size: 1/4" 3" (8 80mm)
- 150psi WSP @ 350°F
- 10 @ 176°C
- 200psi WOG @ 150°F
- 13 bar @ 65°C

MODEL 352M

CLASS 250

- Bronze NPT, Screwed Cap
- Size ¹/₄" 4" (8 100mm)
- 300psi WSP @ 350°F
- 20 bar @ 176°C
- 400psi WOG @ 150°F
- 27 bar @ 65°C

MODEL 352 ½

CLASS 250

Bronze - Silbraze Ends, Screwed Cap

- Size: 1/4" 4" (8 100mm)
- 250psi WSP @ 425°F
- 17 bar @ 218°C

CLASS 125

- Bronze Solder Ends, Gasket Cover
- Size: ¹⁄₄" − 4" (8 100mm)
- 175psi WOG @ 250°F
- 12 bar @ 121°C

MODEL 358S

CLASS 125

- Bronze Solder Ends, Screwed Cap
- Size: 1/4" 3" (8 80mm) • 175psi WOG @ 250°F
- 12 bar @ 121°C

MODEL 758

CLASS 125

Cast Iron - Flanged Ends, Bolted Flange Cover

- Size: 3/4"-24" (20 600mm) to 12"
 - (to 300mm) 8 bar @ 232°C
 - 200psi WOG @ 150°F

(350 - 600mm)

7 bar @ 178°C 150psi WOG @ 150°F 10 bar @ 65°C

125psi WSP @ 450°F

MODEL 752

CLASS 250

Cast Iron - Flanged Ends, Bolted Flange Cover

- Size: 1/2" 24" (15 600mm) to 12" 250psi WSP @ 450°F (to 300mm) 17 bar @ 232°C 500psi WOG @ 150°F 34 bar @ 65°C
- 14"-24" 200psi WSP @ 406°F (350 - 600mm) 13 bar @ 208°C 300psi WOG @ 150°F 20 bar @ 65°C

Our Screens & Baskets are Designed to Achieve Maximum Straining Efficiency

The most critical aspect to any strainer is straining efficiency and durability. Mueller Steam Specialty's many years of experience and continuous improvements provide the highest quality. We carry a larger inventory of perforated metals and meshes than any other strainer manufacturer in the world. Besides standard metals, we carry thousands of variations of materials and openings. Openings range from 1" to 5 microns.

Note: Retainer caps/covers shown are for illustration purposes only. They do not necessarily reflect actual product shipped.

- 14"-24"
 - 13 bar @ 65°C 100psi WSP @ 353°F

"Y" TYPE STRAINERS

MODEL 781 MODEL 781-SS*

CLASS 150

 ${\it Cast Steel/Stainless Steel-Flanged Ends, Bolted Flange Cover}$

- Size: 1/2" 24" (15 600mm)
- 150psi WSP @ 565°F
- 10 bar @ 296°C
- 285psi WOG @ 100°F
- 19 bar @ 38°C

MODEL 782 MODEL 782-SS*

CLASS 300

Cast Steel/Stainless Steel - Flanged Ends, Bolted Flange Cover

- Size: 1/2" 20" (15 500mm)
- 300psi WSP @ 838°F
- 20 bar @ 448°C
- 740psi WOG @ 100°F
- 51 bar @ 38°C

MODEL 764/764-SS*

CLASS 600

Cast Steel/Stainless Steel – Flanged Ends, Bolted Flange Cover

- Size: 1/2" 20" (15 500mm)
- 600psi WSP @ 838°F
- 41 bar @ 448°C
- 1480psi WOG @ 100°F
- 102 bar @ 38°C

MODEL 781-WE MODEL 781-SS-WE*

CLASS 150

Cast Steel/Stainless Steel Butt Weld Ends, Bolted Flange Cover

- Size: ¹/₂" 24" (15 600mm)
- 150psi WSP @ 565°F
- 10 bar @ 296°C
- 285psi WOG @ 100°F
- 19 bar @ 38°C

MODEL 782-WE MODEL 782-SS-WE*

CLASS 300

Cast Steel/Stainless Steel Butt Weld Ends, Bolted Flange Cover

- Size: 1/2" 24" (15 600mm)
- 300psi WSP @ 838°F*
- 20 bar @ 448°C
- 740psi WOG @ 100°F
- 51 bar @ 38°C

MODEL 764-WE MODEL 764-SS-WE*

CLASS 600

Cast Steel/Stainless Steel Butt Weld Ends, Bolted Flange Cover

- Size: 1/2" 16" (15 400mm)
- 600psi WSP @ 838°F
- 41 bar @ 448°C*
- 1480psi WOG @ 100°F
- 102 bar @ 38°C

MODEL 765M MODEL 765M-SS* CLASS 900

Cast Steel/Stainless Steel – Flanged Ends, Bolted Flange Cover

• Size: 1/2" - 10" (15 - 250mm)

- 900psi WSP @ 838°F
- 62 bar @ 448°C*
- 2200psi WOG @ 100°F
- 151 bar @ 38°C

MODEL 766M MODEL 766M-SS*

CLASS 1500

Cast Steel/Stainless Steel – Flanged Ends, Bolted Flange Cover

- Size: 1⁄2" 12" (15 300mm)
- 1500psi WSP @ 838°F
- 103 bar @ 448°C
- 3705psi WOG @ 100°F
- 255 bar @ 38°C

MODEL 767/767-SS*

CLASS 2500

Cast Steel/Stainless Steel - Flanged Ends, Bolted Flange Cover

- Size: 1/2" 12" (15 300mm)
- 2500psi WSP @ 838°F
- 172 bar @ 448°C
- 6170psi WOG @ 100°F
- 425 bar @ 38°C

MODEL 851M CLASS 150

CLASS 150

Bronze – Flanged Ends, Bolted Flange Cover

- Size: 1⁄2" 12" (15 300mm)
- 150psi WSP @ 406°F
- 10 bar @ 208°C
- 225psi WOG @ 150°F
- 15 bar @ 65°C

MODEL 852

CLASS 300

Bronze - Flanged Ends, Bolted Flange Cover

- Size: 1/2" 12" (15 300mm)
- 350psi WSP @ 350°F
- 24 bar @ 176°C
- 500psi WOG @ 150°F
- 34 bar @ 65°C
- * Pressure-Temperature Rating for Stainless Steel Models only

Consult factory for Carbon Steel. Optional sizes, materials, baskets, gaskets and mesh liners are available on application.

Mueller Steam Specialty "Y" strainers have generously proportioned bodies with screens that have an open area many times greater than the corresponding pipe size to ensure low pressure loss. All strainers are hydrostatically tested in accordance with applicable ANSI, API and MSS standards.

TYPE STRAINERS

MODEL 765M-WE MODEL 765M-SS-WE* **CLASS 900**

Cast Steel/Stainless Steel, Butt Weld Ends, **Bolted Flange Cover**

- Size: 1/2" 14" (15 350mm)
- 900psi WSP @ 838°F
- 62 bar @ 448°C
- 2220psi WOG @ 100°F
- 153 bar @ 38°C

MODEL 766M-WE MODEL 766M-SS-WE*

CLASS 1500

Cast Steel/Stainless Steel, Butt Weld Ends, **Bolted Flange Cover**

- Size: 1/2" 16" (15 400mm)
- 1500psi WSP @ 838°F
- 103 bar @ 448°C
- 3705psi WOG @ 100°F
- 255 bar @ 38°C

MODEL 767-WE MODEL 767-SS-WE*

CLASS 2500

Cast Steel/Stainless Steel, Butt Weld Ends, Bolted Flange Cover

- Size: 1/2" 16" (15 400mm)
- 2500psi WSP @ 838°F
- 172 bar @ 448°C
- 6170psi WOG @ 100°F
- 425 bar @ 38°C

MODEL 861-BC MODEL 861-SS-BC*

CLASS 600

Cast Steel/Stainless Steel, NPT Ends **Bolted Flange Cover**

• Size: 1/4" - 2" (8 - 50mm)

MODEL 862-BC MODEL 862-SS-BC*

Cast Steel/Stainless Steel, Socket Weld Ends, Bolted Flange Cover

- Size: ¹/₂" 3" (15 80mm)
- 600psi WSP @ 838°F
- 41 bar @ 448°C
- 1480psi WOG @ 100°F
- 102 bar @ 38°C

MODEL 581/581-SS*

MODEL 861/861-SS* **CLASS 600**

Cast Steel/Stainless Steel, NPT Ends & Cap • Size: 1/2" - 2" (15 - 50mm)

MODEL 582/582-SS* MODEL 862/862-SS*

CLASS 600

- Cast Steel/Stainless Steel, NPT Ends & Screwed Cap
- Size: 1/4" 2" (8 50mm)
- 600psi WSP @ 838°F
- 41 bar @ 448°C
- 1480psi WOG @ 100°F
- 102 bar @ 38°C

MODEL 863M MODEL 863M-SS* **CLASS 1500**

- Cast Steel/Stainless Steel, NPT Ends, Screwed Cap
- Size: 1/2" 2" (15 50mm)
- 11/4", 11/2" & 2" (32, 40 & 50mm) have Bolted Cap

MODEL 864M MODEL 864M-SS*

CLASS 1500

- Socket Weld Ends, Screwed Caps
- Size: 11/4" 2" (32 50mm)
- 1¹/₄", 1¹/₂" & 2" (32, 40, 50mm) have Bolted Cap
- 1500psi WSP @ 838°F
- 103 bar @ 448°C
- 3705psi WOG @ 100°F
- 255 bar @ 38°C

MODEL 865 MODEL 865-SS*

Cast Steel/Stainless Steel, NPT Ends, Bolted Flange Cover **CLASS 2500**

Size: ¹/₂" - 2" (15 - 50mm)

MODEL 866 MODEL 866-SS*

Cast Stainless Steel, Socket Weld Ends, Bolted Flange Cover

- Size: ¹/₂" 2" (15 50mm)
- 2500psi WSP @ 838°F
- 172 bar @ 448°C
- 6170psi WOG @ 100°F
- 425 bar @ 38°C

8

* Pressure-Temperature Rating for Stainless Steel Models only

liners are available on application.

ANSI, API and MSS standards.

Consult factory for Carbon Steel. Optional sizes, materials, baskets, gaskets and mesh

Mueller Steam Specialty "Y" strainers have generously proportioned bodies with screens that have an open area many times greater than the corresponding pipe size to insure low pressure loss. All strainers are hydrostatically tested in accordance with applicable

BASKET TYPE STRAINERS

Mueller Steam Specialty Simplex Basket Strainers are called for when the application requires a strainer with an extremely large capacity.

Most of these strainers have an open area ratio of 6 to 1 with even greater open area ratios available.

As with all of the Mueller Steam Specialty strainers, basket strainers are available in an almost endless combination of materials, pressures, end connections and cover configurations from 1/4" to 24" (72" in fabricated units). Units are also available in cast iron, bronze, carbon steel, stainless steel, Alloy 20 and most other alloys. The baskets in the Mueller Steam Specialty simplex basket strainers share the same quality of construction as the Mueller Steam "Y" strainers.

From threaded end connections to offset flanged connections, we can provide the exact basket strainer to meet your needs.

MODEL 125/125-B** MODEL 125-CS/125-SS**

CLASS 125 - 250*

Cast Iron, Bronze, Cast Steel, Stainless Steel NPT Ends, Quick Open Cover with Non-Yoke knobs, O-ring Seal, Bolted Cover

- Size: 3/8" 3" (10 80mm)
- 200psi WOG @ 150°F
- 13 bar @ 65°C

MODEL 125F/125F-B** MODEL 125F-CS/125F-SS** CLASS 125 - 250*

Cast Iron, Bronze, Cast Steel, Stainless Steel Flanged Ends, Quick Open Cover with Non-Yoke Knobs on most sizes, O-ring Seal

- Size: 1" 12" (25 300mm)
- 200psi WOG @ 150°F

125psi WSP @ 350°F

13 bar @ 65°C

• 9 bar @ 177°C

MODEL 155M CLASS 125

Cast Iron Flanged Ends, Side Swing Clamps on 2"- 12", Vertical Swing Clamps on 14" and 16", Bolted Cover

• Size: 2" - 16" (5	50 - 400mm)
to 12"	200psi WOG @ 150°F
(to 300mm)	13 bar @ 65°C
14"-16"	150psi WOG @ 150°F

(350 - 400mm) 10 bar @ 65°C

* with bolted cover

Pressure-Temperature Rating for **Cast Iron Models

Consult factory for other materials. Optional sizes, materials, baskets, gaskets and mesh liners are available on application.

† Pressure-Temperature Rating for **Stainless Steel Models only**

Consult factory for Carbon Steel. Optional sizes, materials, baskets, gaskets and mesh liners are available on application.

MODEL 165

CLASS 125 Cast Iron

Flanged Ends, Bolted Flange Cover

• Size: 1¹/₄" - 24" (32 - 600mm)

to 12" (to 300mm)

Consult Factory 200psi WOG @ 150°F 13 bar @ 65°C

For Steam

14"-24" For Steam (350 - 600mm) Consult Factory 150psi WOG @ 150°F 10 bar @ 65°C

MODEL 166

Cast Iron

•

,	Size: 2" - 24"	(50 - 600mm)
	to 12"	250psi WSP @ 406°F
	(to 300mm)	17 bar @ 208°C
		500psi WOG @ 150°F
		34 bar @ 65°C

200psi WSP @ 406°F 13 bar @ 208°C 300psi WOG @ 150°F 20 bar @ 65°C

MODEL 165-B CLASS 150

Bronze

- Flanged Ends, Bolted Flange Cover
- Size: 2" 12" (50 300mm)
- 150psi WSP @ 406°F
- 10 bar @ 208°C
- 225psi W0G @ 150°F
- 15 bar @ 65°C

MODEL 166-B

CLASS 300 Bronze

Flanged Ends, Bolted Flange Cover

- Size: 2" 12" (50 300mm)
- 350psi WSP @ 350°F
- 24 bar @ 176°C
- 500psi WOG @ 150°F
- 34 bar @ 65°C
- 300psi WSP @ 406°F
- 20 bar @ 208°C

MODEL 185/185-SS⁺ **CLASS 150**

Cast Steel/Stainless Steel Flanged Ends, Bolted Flange Cover • Size: 11/4" - 20" (32 - 500mm)

- 150psi WSP @ 565°F
- 10 bar @ 296°C
- 285psi WOG @ 100°F
- 19 bar @ 38°C

MODEL 186/186-SS⁺

CLASS 300

Cast Steel/Stainless Steel Flanged Ends, Bolted Flange Cover

- Size: 11/4" 16" (32 400mm)
- 505psi WSP @ 750°F

MODEL 126F-CS

CLASS 300 Cast Steel/Stainless Steel Flanged Ends, Bolted Flange Cover

- Size: 3/4" 18" (20 450mm)
- 300psi WSP @ 838°F
- 21 bar @ 448°C
- 740psi WOG @ 100°F
- 51 bar @ 38°C

MODEL 126F-SS

CLASS 300

Cast Steel/Stainless Steel Flanged Ends, Bolted Flange Cover

- Size: 3/4" 18" (20 450mm)
- 300psi WSP @ 838°F
- 21 bar @ 48°C
- 720psi WOG @ 100°F
- 50 bar @ 38°C

CLASS 250 Flanged Ends, Bolted Flange Cover

14"-24" (350 - 600mm)

DUPLEX STRAINERS

Many times, critical systems cannot be shut down for strainer basket cleaning. These systems include cooling water, compressors, condensers, fire lines, fuel lines, chemical process systems, pump suction applications and other similar services. For these applications, the Mueller Steam Specialty Duplex Strainer is the perfect choice.

For sizes ³/₄" through 6", the Revolutionary Ball-Plex[™] duplex strainer from Mueller Steam Specialty has all of the features you need. Bubble tight seating, true in-line maintainability, extremely easy seat replacement and long, trouble-free service life in a very simple and rugged design.

Available from stock in cast iron, bronze, carbon steel and stainless steel. Other alloys are also available.

All of the Ball-Plex[™] units are standard with 316 SS balls and PTFE seats. Other alloys are also available for the balls.

Threaded and flanged units are available with full rated pressures from Class 125 to Class 300 (Class 600 flanges also available). With the floating ball design and relatively low torque requirements, it is very easy to automate these units for remote operation.

MUELLER STEAM SPECIALTY'S REVOLUTIONARY BALL-PLEX™ STRAINER

³/₄" - 6" (20 - 150mm)

MODEL 791-SAH

CLASS 125 Cast Iron

NPT Ends, Knob Type Cover 316 SS Balls,

- Size: ³/₄" 3" (20 80mm)
- 200psi WOG @ 150°F
- 13 bar @ 65°C

MODEL 792-SBH

CLASS 150 Bronze

• Size: 3/4" - 3" (20 - 80mm)

MODEL 792-SDH*

CLASS150

Carbon Steel

- Size: 3⁄4" 3" (20 80mm)
- 285psi WOG @ 100°F
- 19 bar @ 38°C

MODEL 792-SHH

CLASS150 Stainless Steel

• Size: ³/₄" - 3" (20 - 80mm)

MODEL 791-FAH

CLASS 125 Cast Iron

Flanged Ends, Knob Type Cover 316 SS Balls

- Size: 1" 6" (25 150mm)
- 200psi WOG @ 150°F
- 13 bar @ 65°C

MODEL 794-SBH

CLASS 300 Bronze

• Size: 3⁄4" - 3" (20 - 80mm)

MODEL 794-SDH* CLASS 300

Carbon Steel

- Size: ³/₄" 3" (20 80mm)
 740psi WOG @ 100°F
- 51 bar @ 38°C

MODEL 794-SHH

CLASS 300 Stainless Steel • Size: ³/₄" - 3" (20 - 80mm)

MODEL 796-SDH*

CLASS 600 Carbon Steel

- Size: ³/₄" 3" (20 80mm)
- 740psi WOG @ 100°F
- 51 bar @ 38°C

MODEL 796-SHH

CLASS 600 Stainless Steel

• Size: ³/₄" - 3" (20 - 80mm)

MODEL 792-FBH

CLASS 150 Bronze

Size 1"-6" (25 - 150mm)

MODEL 792-FDH*

CLASS 150

- Carbon Steel • Size 1"-6" (25 - 150mm)
- 285psi WOG @ 100°F
- 19 bar @ 38°C

MODEL 792-FHH

CLASS 150 Stainless Steel

Size 1"-6" (25 - 150mm)

MODEL 794-FBH CLASS 300

- Bronze
- Size 1"-6" (25 150mm)

MODEL 794-FDH*

CLASS 300 Carbon Steel

- Size 1"-6" (25 150mm)
- 740psi WOG @ 100°F
- 51 bar @ 38°C

MODEL 794-FHH

CLASS 300 Stainless Steel

• Size 1"- 6" (25 - 150mm)

MODEL 796-FDH*

CLASS 600

- Carbon Steel
- Size: 1" 6" (25 150mm)
- 740psi WOG @ 100°F
- 51 bar @ 38°C

MODEL 796-FDH*

CLASS 600

- Stainless Steel
- Size: 1" 6" (25 150mm)

* Pressure-Temperature Rating for Stainless Steel Models only

Consult factory for Carbon Steel. Optional sizes, materials, baskets, gaskets and mesh liners are available on application.

DUPLEX STRAINERS - 8" - 24" (200 - 600mm)

For sizes from 8" - 24" (200 - 600mm), the larger Mueller Steam Specialty duplex strainer is the unit of choice. Using an in-line plug design, quick flow transfer is accomplished with less than a 90° rotation of the handle. Economical actuation of the unit is also available.

Sizes 8" - 16" (200 - 400mm) are available in cast iron, bronze, carbon steel and stainless steel and Class 125 and 150.

Sizes 18" - 24" (450 - 600mm) are fabricated. All units can be supplied with special materials, baskets and coatings.

8" - 24" DUPLEX STRAINERS

MODEL 691 MFA CLASS 125

Body: Cast Iron Flanged Ends, Bolted or Clamped Flange Cover

- Size: 8" 16"
- (200 400mm)
- 150psi @ 150°F
 10 bar @ 65°C

MODEL 692 MF

CLASS 150 Body: Bronze, Carbon Steel, Stainless Steel Flanged Ends, Bolted or Clamped Flange Cover

CLAMP COVER

- Size: 8" 16" (200 400mm)
- 150psi WOG @ 100°F*
- 10 bar @ 38°C*

BOLTED COVER

- Size: 8" 16" (200 400mm)
- 200psi WOG @ 100°F*
- 13 bar @ 38°C*
- Size 14" 16" (350 400mm)
- 150psi WOG @ 100°F*
- 10 bar @ 38°C*

HOW TO ORDER

Mueller Steam Specialty **Ball-Plex™** Duplex Strainer basic model numbers are based on ANSI Class connections as follows:

791 for Class 125 792 for Class 150 794 for Class 300 796 for Class 600

For Marine and other larger styles:

690 for 50psi (marine duplex with Class 125 flanges)

691 for Class 125 692 for Class 150

EXAMPLE

Three inch Model 791S-AH (see above) with some special feature such as special baskets, blow-off connections, special O-rings, etc.

This is a Class 125 duplex strainer with NPT Ends, cast iron body and covers, stainless steel balls. The ordering and tagging number is written as follows:

Model # Code Example 3.0 791 S A H X

Pipe Size –	
Model No -	
End –	
Body –	
Ball –	
Special Feature –	

Consult factory for all special features. If no special features are required use "O" in place of "X" in the ordering and tagging number.

	MATERIAL	CODE
End	Flanged	F
	NPT	S
	Cast Iron	А
Body	Bronze	В
bouy	Carbon Steel	D
	Stainless Steel	Н
	Monel	Q
Ball	Bronze	В
	Stainless Steel	Н

* Pressure-Temperature Rating for Stainless Steel Models only

Consult factory for Carbon Steel. Optional sizes, materials, baskets, gaskets and mesh liners are available on application.

SPECIAL STRAINERS

FIRELINE STRAINERS

U.L. approved strainers for fireline service are designed specifically for applications such as automatic water sprinklers and spray systems in firelines. The very large open area ratio helps prevent problems due to clogging of the screen. These units are available with open areas up to seven times the corrsponding pipe size. This exceeds the AWWA requirements by almost 200%.

Whether the need is for a "Y" strainer or a basket strainer, Mueller cast iron fireline strainers from 21/2" to 12" can meet your needs.

METER STRAINERS

When expensive displacement water meters and other sensitive fluid monitoring devices need to be protected from damage due to particles and debris in the line and space is a problem, the Mueller Steam Specialty meter strainers are the solution.

These units have been designed to meet AWWA requirements of a straining area at least twice the size of the main meter case inlet of turbine type meters.

Available in cast iron and bronze from 11/2" to 8", these units are designed to eliminate vour meter protection problems.

FABRICATED STRAINERS

Mueller Steam Specialty has a long history of providing the highest guality, economical fabricated strainers to meet every need.

Whether the requirement is for a basket strainer, large "Y" strainer, "Tee" type strainer, temporary strainer or large duplex strainer, Mueller will custom engineer and fabricate the exact strainer required.

Some of the special features available include:

- Special Dimensions
- Special Baskets
- Special Covers (Lifting Davits, Quick Opening etc.)
- Special End Connections
- Special Corrosion Allowances
- Special Draining and Cleaning
- Special Certifications:

ASME code stamped, etc.

MODEL 595 CLASS 125

Cast Iron Flanged Ends,

- U.L. Approved for Fireline Service • Size: 4" - 12" (100 - 300mm)
- 175psi WOG @ 150°F
- 12 bar @ 65°C

MODEL 911U CLASS 125

Cast Iron Flanged Ends

U.L. Approved for Fireline Service Size: 2¹/₂" - 12" (65 - 300mm)

- 175psi WOG @ 150°F
- 12 bar @ 65°C

MODEL 625

CLASS 125 Cast Iron

- Flanged Ends, Bolted Cover,
- Size: 3" 8" (80 200mm)
- 175psi WOG @ 150°F
- 12 bar @ 65°C

CLASS 150

CLASS 300

CLASS 600

Flanged Ends

Flanged Ends

Flanged Ends

Carbon Steel, Stainless Steel, and other Alloys,

Carbon Steel, Stainless Steel, and other Alloys,

Carbon Steel, Stainless Steel, and other Allovs.

• Size: 4" - 36" (100 - 900mm)

• Size: 4" - 24" (100 - 600mm)

• Size: 4" - 24" (100 - 600mm)

MODEL 784 FAB

MODEL 782 FAB

MODEL 625-B CLASS 150

- **Bronze** Flanged Ends, Bolted Cover
- Size: 1½" 8" (40 200mm)
- 175psi WOG @ 150°F

• 12 bar @ 65°C

MODEL 781 FAB

CLASS 150

Carbon Steel, Stainless Steel, and other Alloys, Weld Ends

• Size: 4" - 36" (100 - 900mm)

MODEL 782 WE-FAB **CLASS 300**

MODEL 781 WE-FAB

Carbon Steel, Stainless Steel, and other Alloys, Weld Ends

Size: 4" - 24" (100 - 600mm)

MODEL 784 WE-FAB

CLASS 600

Carbon Steel, Stainless Steel, and other Alloys, Weld Ends

Size: 4" - 24" (100 - 600mm)

Class 900 and higher available

12

FABRICATED STRAINERS

MODEL 22

BASKET TYPE

Carbon Steel, Stainless Steel and other Alloys Size: ³/₄" - 60" (20 - 1500mm)

MODEL 23

CONICAL TYPE

Carbon Steel, Stainless Steel and other Alloys • Size: 3/4" - 60" (20 - 1500mm)

MODEL 24

PLATE TYPE

- · Carbon Steel, Stainless Steel and other Alloys
- Size: 3/4" 60" (20 1500mm)

MODEL 185 FAB-B **CLASS 150**

Carbon Steel, Stainless Steel, and other Allovs

Bolted Cover • Size: 4" - 54" (100 - 1350mm)

MODEL 186 FAB-B

CLASS 300

Carbon Steel, Stainless Steel, and other Alloys **Bolted** Cover • Size: 4" - 48" (100 - 1200mm)

MODEL 188 FAB-B

CLASS 600

Carbon Steel, Stainless Steel, and other Alloys Bolted Cover • Size: 4" - 36" (100 - 900mm)

MODEL 185 FAB-Q

CLASS 150

Carbon Steel, Stainless Steel, and other Alloys Quick Opening Cover • Size: 4" - 36" (100 - 900mm)

MODEL 41 T-B

CLASS 150 Carbon Steel, Stainless Steel, and other Allovs Bolted Cover • Size: 2" - 36" (50 - 900mm)

MODEL 42 T-B

CLASS 300 Carbon Steel, Stainless Steel, and other Alloys Bolted Cover • Size: 2" - 36" (50 - 900mm)

MODEL 44 T-B

CLASS 600 Carbon Steel, Stainless Steel, and other Alloys Bolted Cover

• Size: 2" - 36" (50 - 900mm)

MODEL 46 T-B

CLASS 900 Carbon Steel, Stainless Steel, and other Alloys **Bolted Cover**

• Size: 2" - 36" (50 - 900mm)

MODEL 48 T-B

CLASS 1500 Carbon Steel, Stainless Steel, and other Alloys **Bolted Cover** • Size: 2" - 36" (50 - 900mm)

MODEL 41 T-Q

CLASS 150 Carbon Steel, Stainless Steel, and other Alloys Quick Opening Cover • Size: 2" - 36" (50 - 900mm)

Mueller Steam Specialty

has a long history of providing the highest quality, economical fabricated strainers to meet every need. From Class 150 to Class 2500, we produce steel and alloy fabricated strainers to your exact requirements.

QUICK ACTING STRAINERS

MODEL 15A

CLASS 150 Available Body Material: Carbon Steel, Stainless Steel, and other Alloys, Butt Weld • Size: 1" - 48" (25 - 1200mm)

MODEL 15AF

CLASS 150 Available Body Material: Carbon Steel, Stainless Steel, and other Alloys Flanged Ends • Size: 1" - 48" (25 - 1200mm)

MODEL 30A

CLASS 300 Available Body Material: Carbon Steel, Stainless Steel, and other Alloys Butt Weld • Size: 1" - 48" (25 - 1200mm)

MODEL 30AF

CLASS 300 Available Body Material: Carbon Steel, Stainless Steel, and other Alloys Flanged Ends

• Size: 1" - 48" (25 - 1200mm)

MODEL 60A CLASS 600

Available Body Material: Carbon Steel, Stainless Steel, and other Alloys Butt Weld • Size: 1" - 48" (25 - 1200mm)

MODEL 60AF

CLASS 600

Available Body Material: Carbon Steel, Stainless Steel, and other Alloys Flanged Ends • Size: 1" - 48" (25 - 1200mm)

MODEL 90A

CLASS 900 Available Body Material: Carbon Steel, Stainless Steel, and other Alloys Butt Weld • Size: 1" - 48" (25 - 1200mm)

MODEL 90AF

CLASS 900 Available Body Material:

Carbon Steel, Stainless Steel, and other Alloys Flanged Ends • Size: 1" - 48" (25 - 1200mm)

MODEL 150A

CLASS 1500 Available Body Material: Carbon Steel, Stainless Steel, and other Alloys

Butt Weld • Size: 1" - 48" (25 - 1200mm)

MODEL 150AF

CLASS 1500 Available Body Material: Carbon Steel, Stainless Steel, and other Alloys Flanged Ends • Size: 1" - 48" (25 - 1200mm)

MODEL 250A

CLASS 2500 Available Body Material: Carbon Steel, Stainless Steel, and other Alloys Butt Weld • Size: 1" - 48" (25 - 1200mm)

MODEL 250AF

CLASS 2500 Available Body Material: Carbon Steel, Stainless Steel, and other Alloys Flanged Ends • Size: 1" - 48" (25 - 1200mm)

Trust Mueller Steam Specialty

strainers & valves to handle the most demanding needs of the marine industry. We have a vast knowledge of product/ service compatibility combined with an endless array of materials, sizes, pressures and end connections to meet your application requirements.

PUMP PROTECTION

Mueller Steam Specialty Control-Chek Combination Valve and Suction Diffuser.

The Mueller Steam Specialty Pump Protection Package is a compact, effective and economical way to simplify the maze of piping found in most pump locations.

Our Control-Chek[®] valve has been specifically designed to incorporate balancing, shut off and check valve functions into one compact, easily installed unit. This saves space, installation cost and maintenance time.

The Suction Diffuser does more than just strain out particles that could damage your pump. By replacing the elbow, strainer and entry pipe on the suction side of the pump, a tremendous savings in space, equipment and labor will be realized. Our Control-Chek[®] and Suction Diffuser, together with an inlet control valve, can replace up to six costly, space-robbing pipe components. That does not include the savings due to fewer welds, hangers, flanges, ease of maintenance and improved access in the mechanical room. Both units are also available in our LOCXEND[®] line (See page 27).

Contact us for more information on these products.

MODEL 721

CLASS 125 Cast Iron Control-Chek[®], Flanged Ends, Bolted Yoke Cover with Position Indicator • Size: 2" - 14" (50 - 350mm) 2"-12" 200psi WOG @ 150°F

(50 - 300mm) 13 bar @ 6 14" 150psi W0 (350mm) 10 bar @ 6

13 bar @ 65°C 150psi WOG @ 150°F 10 bar @ 65°C

MODEL 722 MODEL 722G (LOCXEND®) CLASS 300

Ductile Iron Control-Chek®

Size: 2" - 12"	
2"-10"	640psi WOG @ 100°F
(50 - 250mm)	44 bar @ 38°C
12"	500psi WOG @ 100°F
(300mm)	34 bar @ 38°C

MODEL 1011

CLASS 125 Cast Iron Flanged Ends, Knob Cover through 8" x 8" Bolted Available through 18" x 18"

 Size: 2" x 1¼" - 12" x 12" (50 x 32mm - 300 x 300mm) 200psi WOG @ 150°F 13 bar @ 65°C

Consult factory for temperature & pressure data for bolted cover, larger sizes.

MODEL 1012

CLASS 300

Ductile Iron Flanged Ends, Knob Cover through 8" x 8" Bolted Available through 18" x 18"

 Size: 2" x 1¼" - 12" x 12" (50 x 32mm - 300 x 300mm) 300psi WOG @ 100°F 20 bar @ 38°C

Consult factory for temperature & pressure data for bolted cover, larger sizes.

MODEL1011G (LOCXEND®) CLASS 300

Ductile Iron, Knob Cover through 8" x 8", Bolted Available through 14" x 14" Ends: Grooved Inlet - Flanged Outlet

 Size: 2" x 1¼" - 12" x 12" (50 x 32mm - 300 x 300mm) 300psi WOG @ 100°F 20 bar @ 38°C
 Consult factory for temperature & pressure data for bolted cover, larger sizes.

CHEXTER® CHECK VALVE

The CHEXTER® Check Valves are designed to be used economically in a variety of commercial and industrial applications - including commercial construction, industrial, marine, utilities and process industries.

CHEXTER® Check valves meet the requirements of, and are approved for use by:

- General Services Administration
- U.S. Navy, the U.S. Coast Guard, U.S. Air Force and NASA
- Utility industry requirements for performance-Water, gas and compressed air lines

The CHEXTER® Check valve may be outfitted in a broad combination of metal trims allowing quick selection of the right valve for your application.

MODEL 1600-D CLASS 125

Cast Iron body/Buna-N Seal Facing: Flat Face Flange

• Size: 2" - 36"	(50 - 900mm)
2" - 12"	200psi WOG @150°F
50 - 300mm	14 bar @ 66°C
14" - 24" 350 - 600mm	150psi WOG@150°F 10 bar @ 66°C
30" & Up	150psi WOG @ 150°F
900mm	10 bar @ 66°C

MODEL 1600-DE

CLASS 125

Ca	ist Iron body/Buna-N Seal
Fa	cing: Flat Face Flange
•	Size: 2"-36" (50 - 900mm)

SIZE: Z -36 (50	- 900mm)
2" - 12"	200psi WOG @150°F
50 - 300mm	14 bar @ 66°C
14" - 24"	150psi WOG@150ºF
350 - 600mm	10 bar @ 66°C
30" & Up	150psi WOG @ 150°F
900mm	10 bar @ 66°C

MODEL 1602-D CLASS 250

0LA00 200	
Cast Iron body/Buna	a-N Seal
Facing: Raised Flan	ge
• Size: 2" - 30" (5	0 - 760mm)
2" - 12"	500psi WOG @150°F
50 - 300mm	34 bar @ 66°C
14" - 24"	300psi WOG@150°F
350 - 600mm	21 bar @ 66(C
30"	300psi WOG @ 150°F
900mm	21 bar @ 66°C

MODEL 1602-DE

CLASS 250

Cast Iron body/Buna-N Seal Facing: Raised Flange

•	Size: 2" - 24" (50) - 600mm)
	2" - 12"	500psi WOG @150°F
	50 - 300mm	34 bar @ 66°C
	14" - 24"	300psi WOG@150°F
	350 - 600mm	21 bar @ 66°C

MODEL 1601-A CLASS 150

Carbon Steel body/Buna-N Seal

- Facing: Raised Flange
- Size: 2" 30" (50 750mm)
- 285psi WOG @ 100(F
- 20 bar @ 38(C

MODEL 1601-AC **CLASS 150**

Carbon Steel body/Teflon seal Facing: Raised Flange

- Size: 2" 30" (50 750mm)
- 285psi WOG @ 100°F
- 20 bar @ 38°C

MODEL 1601-AF **CLASS 150**

Carbon steel body/Metal-to-metal seal Facing: Raised Flange

- Size: 2" 30" (50 750mm)
- 285psi WOG @ 100°F
- 20 bar @ 38°C

MODEL 1601-C

CLASS 150

316 SS body/Teflon seal Facing: Raised Flange

- Size: 2" 12" (50 300mm)
- 275psi WOG @ 100°F
- 19 bar @ 38°C

MODEL 1601-E CLASS 150

Aluminum bronze body/Teflon seal Facing: Raised Flange

- Size: 2" 12" (50 300mm)
- 195psi WOG @ 100°F
- 13 bar @ 38°C

CHEXTER® CHECK VALVE

MODEL 1603-A CLASS 300

Carbon steel body/Buna-N seal Facing: Raised Flange

- Size: 2" 24" (50 600mm)
- 740psi WOG @ 100°F
- 51 bar @ 38°C

MODEL 1603-AC CLASS 300

Carbon steel body/Teflon seal Facing: Raised Flange

- Size: 2" 24" (50 600mm)
- 740psi WOG @ 100°F
- 51 bar @ 38°C

MODEL 1603-AF

CLASS 300

Carbon steel body/Metal-to-metal seal Facing: Raised Flange

- Size: 2" 24" (50 600mm)
- 740psi WOG @ 100°F
- 51 bar @ 38°C

MODEL 1603-C CLASS 300

316 SS body/Teflon seal Facing: Raised Flange

- Size: 2" 12" (50 300mm)
- 720psi WOG @ 100°F
- 50 bar @ 38°C

MODEL 1603-E

CLASS 300

Aluminum Bronze body/Teflon seal Facing: Raised Flange

- Size: 2" 12" (50 300mm)
- 515psi WOG @ 100°F
- 36 bar @ 38°C

MODEL 1604-A CLASS 400

Carbon Steel body/Buna-N seal

- Facing: Raised Flange • Size: 2" - 24" (50 - 600mm)
- 990psi WOG @ 100°F
- 68 bar @ 38°C

MODEL 1605-A

CLASS 600

Carbon steel body/Buna-N seal Facing: Raised Flange

- Size: 2" 24" (50 600mm)
- 1480psi WOG @ 100°F
- 102 bar @ 38°C

MODEL 1605-AC CLASS 600

Carbon steel body/Teflon seal Facing: Raised Flange

- Size: 2" 24" (50 600mm)
- 1480psi WOG @ 100°F
- 102 bar @ 38°C

MODEL 1605-AF

CLASS 600

Carbon steel body/Metal-to-Metal seal Facing: Raised Flange

- Size: 2" 24" (50 600mm)
- 1480psi WOG @ 100°F
- 102 bar @ 38°C

MODEL 1605-C CLASS 600

316 SS body/Teflon seal Facing: Raised Flange

- Size: 2" 12" (50 300mm)
- 1480psi WOG @ 100°F
- 99 bar @ 38°C

tal-to-Metal seal

MODEL 1606-A CLASS 900

Carbon steel body/Buna-N seal Facing: Raised Flange

- Size: 2" 12" (50 300mm)
- 2120psi WOG @ 100°F
- 146 bar @ 38°C

MODEL 1606-AC

CLASS 900

Carbon steel body/Teflon seal Facing: Raised Flange

- Size: 2" 12" (50 300mm)
- 2120psi WOG @ 100°F
- 146 bar @ 38°C

MODEL 1606-AF

CLASS 900

Carbon steel body/Metal-to-metal seal Facing: Raised Flange

- Size: 2" 12" (50 300mm)
- 2120psi WOG @ 100°F
- 146 bar @ 38°C

MODEL 1606-C

CLASS 900

316 SS body/Teflon seal Facing: Raised Flange

- Size: 2" 12" (50 300mm)
- 2010psi WOG @ 100°F
- 139 bar @ 38°C

HOW TO ORDER CHEXTER® CHECK VALVE

		12	_600	16	Q	5	AC	СНХ	CS_SOFT
Size									
2" - 30"									
Pressure Class									
150 - 900#									
Figure 16 = CH	EXTER								
Check Valve									
0 - Raised Face	Flange Facing								
4- Ring Joint F	lange Facing								
Pressure Class									
1- Class 150 5 - Class 600 7 - Class 1500	3 - Class 300" 6 - Class 900								
	:	Standar	d CHEXTER	R Materia	als				
		"AC" - Carl "AF" - Carl "C" - 316SS "D" - Cast "DE" - Cast	on Steel Body/ bon Steel Body on Steel Body S Body/TEFLOI iron Body/BU t Iron Body/BL num Bronze B	y/TEFLON //Metal to N Deals NA-N Seal JNA-N Sea	Seal Metal Seal II	CHEX	reviation TER Check Va	lve	
							11 Spaces		

Information (ie: Material Type, Spft/ Hard Seat, etc.)

CHEXTER® CHECK VALVE

MODEL 1645-A CLASS 600

Carbon steel body/Buna-N seal Facing: Ring Type Joint

- Size: 2" 12" (50 300mm)
- 1480psi WOG @ 100°F
- 102 bar @ 38°C

MODEL 1645-AC CLASS 600

Carbon steel body/Teflon seal Facing: Ring Type Joint

- Size: 2" 12" (50 300mm)
- 1480psi WOG @ 100°F
- 102 bar @ 38°C

MODEL 1645-AF

CLASS 600

Carbon steel body/Metal-to-Metal seal Facing: Ring Type Joint

- Size: 2" -12" (50 300mm)
- 1480psi WOG @ 100°F
- 102bar @ 38°C

MODEL 1645-C

CLASS 600

316 SS body/Teflon seal Facing: Ring Type Joint

- Size: 2" 12" (50 300mm)
- 1440psi WOG @ 100°F
- 99 bar @ 38°C

MODEL 1646-A CLASS 900

Carbon steel body/Buna-N seal Facing: Ring Type Joint

- Size: 2" 12" (50 300mm)
- 2120psi WOG @ 100°F
 146 bar @ 38°C

MODEL 1646-AC CLASS 900

Carbon steel body/Teflon seal Facing: Ring Type Joint

- Size: 2" 12" (50 300mm)
- 2120psi WOG @ 100°F
- 146 bar @ 38°C

MODEL 1646-AF

CLASS 900

Carbon steel body/Metal-to-metal seal Facing: Ring Type Joint

- Size: 2" 12" (50 300mm)
- 2120psi WOG @ 100°F
- 146 bar @ 38°C

MODEL 1646-C CLASS 900

316 SS body/Teflon seal Facing: Ring Type Joint

- Size: 2" 12" (50 300mm)
- 2120psi WOG @ 100°F
- 146 bar @ 38°C

MODEL 1696-A

CLASS 2000 LB. API WOG

Carbon steel body/Buna-N seal Facing: Ring Type Joint Unibody Style

- Size: 2" 4" (50 100mm)
- 2000psi WOG @ 100°F
- 138 bar @ 38°C

MODEL 1607-A

CLASS 1500

Carbon steel body/Buna-N seal Facing: Raised Flange Unibody Style

- Size: 2" 10" (50 250mm)
- 3705psi WOG @ 100°F
- 255 bar @ 38°C

MODEL 1647-A

CLASS 1500

Carbon steel body/Buna-N seal Facing: Ring Type Joint Unibody Style

- Size: 2" 10" (50 250mm)
- 3705psi WOG @ 100°F
- 255 bar @ 38°C

MODEL 1697-A

CLASS 3000 LB API WOG

Carbon steel body/Buna-N seal Facing: Ring Type Joint Unibody Style

- Size: 2" 4" (50 100mm)
- 3000psi WOG @ 100°F
- 207 bar @ 38°C

SILENT CHECK VALVES - WAFER STYLE

Mueller Steam Specialty has redesigned our Silent Check Valves in order to offer better flow efficiency, lower pressure drop and improved cost. Designed with compact springs, the valve prevents flow reversal to eliminate water hammer, vibrations, system surges and noise. These units can be installed horizontally or vertically. Please consult factory for vertical downward flow applications.

The latest Mueller Wafer Silent Check Valve keeps the traditional design for short faceto-face dimensions and fits conveniently between two matching flanges, easily replacing our existing 100 Series wafer silent check valves. Now with a more simplistic design, parts are easily field repairable or replaceable without special tooling.

The 92M, 94M and 96M series wafer checks are suitable for normal liquid, air and gas applications. These units are available in ductile iron, bronze, carbon steel and stainless steel, all with stainless steel trim as a standard.

FEATURES:

- Units fully ANSI rated.
- Consistent cracking pressure: .5psi net
- Unique check valve seal is independent of flange gasket.
- Disc travel full open is approximately ¹/₄" per inch of valve size.
- Metal-to-metal seat meets or exceeds API 598 leakage requirements.
- Soft seat provides bubble tight shut off at as low as 5 ft. of water head.
- Simple design enables field parts replacement without special tools.
- PN16, PN25 and PN40 flange drilling available.

94 SERIES WAFER CHECK

MODEL 92M-IP

Ductile Iron body, Bronze Trim

- Size: 1" 10" (25 250mm)
- 250psi WOG @ 100°F / 17 bar @ 38°C

MODEL 92M-HT

Stainless Steel body, Stainless Steel Trim

- Size: 8" 12" (200 300mm)
- 275psi WOG @ 100°F / 19 bar @ 38°C For use with Class 150 or 300 flanges

MODEL 94M-IT

Ductile Iron body, Stainless Steel Trim • Size: 2" - 10" (50 - 250mm) For use with Class 150 or 300 flanges

MODEL 94M-IP

- Ductile Iron body, Bronze Trim
- Size: 8" 10" (200 300mm)
- 640psi WOG @ 100°F / 44 bar @ 38°C
- For use with Class 150 or 300 flanges

MODEL 94M-HT

Stainless Steel body, Stainless Steel Trim

- Size: 1" 10" (25 250mm)
- 720psi WOG @ 100°F / 50 bar @ 38°C
- For use with Class 150 or 300 flanges

MODEL 96M-DT

- Carbon Steel body, Stainless Steel Trim
- Size: 1" 6" (25 150mm)
- 1480psi WOG @ 100°F / 102 bar @ 38°C
- For use with Class 600 flanges

MODEL 96M-HT

- Stainless Steel body, Stainless Steel Trim
- Size: 1" 6" (25 150mm)
- 1440psi WOG @ 100°F / 99 bar @ 38°C
- For use with Class 600 flanges

92M-94M-96M SIZES 1" - 11/2" (25 - 40mm)

SILENT CHECK VALVES - WAFER STYLE

Mueller Steam Specialty Silent Check Valves are designed with a spring assisted in-line disc that is guided both upstream and downstream. This design feature allows valve closure at zero flow. Flow reversal does not occur and check valve induced water hammer is eliminated.

The Mueller Wafer Silent Check Valve is designed with a short face-to-face dimension and fits conveniently between two matching flanges. Only a limited amount of space is needed for installation and installation time is reduced. The valves are used in a variety of liquid, air and gas applications. These units are available in cast iron, bronze, carbon steel, stainless steel and other alloys.

STANDARD WAFER

MODEL 101 MAP

CLASS 125

- Cast Iron Body/Bronze Trim
- Size: 1" 10" (25 250mm)
 200psi WOG @ 150°F
- 200µSI WUG @
 12 hor @ CE°C
- 13 bar @ 65°C

MODEL 103 MAP CLASS 250

Cast Iron Body/Bronze Trim

- Size: 1" 10" (25 250mm)
 500psi WOG @ 150°F
- 34 bar @ 65°C

MODEL 101 MAT

CLASS 125

Cast Iron Body/Stainless Steel Trim

- Size: 1" 10" (25 250mm)
- 200psi WOG @ 150°F
- 13 bar @ 65°C

MODEL 103 MAT CLASS 250

Cast Iron Body/Stainless Steel Trim

• Size: 1" - 10" (25 - 250mm)

- 500psi WOG @ 150°F
- 34 bar @ 65°C

MODEL 101 MBP CLASS 150

Bronze Body/Bronze Trim

- Size: 1" 10" (25 250mm)
- 225psi WOG @ 150°F
- 15 bar @ 65°C

MODEL 103 MBP CLASS 300

- Bronze Body/Bronze Trim
- Size: 1" 6" (25 150mm)
- 500psi WOG @ 150°F
- 34 bar @ 65°C

MODEL 101 MDT CLASS 150

- Carbon Steel Body/316 SS Trim
- Size: 1" 10" (25 250mm)
- 285psi WOG @ 100°F
- 19 bar @ 38°C

MODEL 103 MDT CLASS 300

Carbon Steel Body/316 SS Trim

- Size: 1" 10" (25 250mm)
- 740psi WOG @ 100°F
- 51 bar @ 38°C

MODEL 131 DT

CLASS 600

- Carbon Steel Body/316 SS Trim
- Size: 1" 6" (25 150mm)
- 1480psi WOG @ 100°F
- 102 bar @ 38°C

MODEL 101 MHT CLASS 150

Carbon Steel Body/316 SS Trim

- Size: 1" 10" (25 250mm)
- 275psi WOG @ 100°F
- 19 bar @ 38°C

MODEL 103 MHT

CLASS 300

Carbon Steel Body/316 SS Trim

- Size: 1" 10" (25 250mm)
- 720psi WOG @ 100°F
- 49 bar @ 38°C

MODEL 131 HT

CLASS 600

- Carbon Steel Body/316 SS Trim
- Size: 1" 6" (25 150mm)
 1440psi WOG @ 100°F
- 99 bar @ 38°C

COMPACT WAFER

MODEL 91AP

For use with Class 125, 150, 250 or 300 flanges

- Cast Iron Body/Bronze Trim
- Size: 1½" − 6" (40 − 150mm)
- 150psi WOG @ 150°
- 10 bar @ 65°

MODEL 91AT

For use with Class 125, 150, 250 or 300 flanges

- Cast Iron Body/316 SS Trim
- Size: 1½" 6" (40 150mm)
- 150psi WOG @ 150°
- 10 bar @ 65°

MODEL 92AP

For use with Class 125 or 150 flanges

- Cast Iron Body/Bronze Trim
- Size: 8" -12" (200 300mm)

MODEL 93AP

For use with Class 250 or 300 flanges

- Cast Iron Body/Bronze Trim
- Size: 8" -10" (25 250mm)
- 150psi WOG @ 150°F
- 10 bar @ 65°C

SILENT CHECK VALVES - GLOBE STYLE

With the same design features as the wafer silent check valves, the Globe style valves offer a more streamlined flow and lower pressure drop figures.

The valves are designed for liquid, air and gas service* and are available in a complete range of sizes, body trim materials and pressure classes. These valves are engineered to be partially open at 0.5psi and fully open at 1psi differential pressure at a liquid velocity of 8 feet per second.

Mueller Globe Style Silent Check Valves can be installed in horizontal or vertical flow. Each valve is 100% tested in accordance with ANSI, API and MSS standards.

GLOBE STYLES

MODEL 105 MAP

CLASS 125

Cast Iron Body/Bronze Trim Size: 2" - 30" (50 - 750mm) 2" - 12" 200psi WOG @ 150°F 13 bar @ 65°C 14"-24" 150psi WOG @ 150°F

10 bar @ 65°C

MODEL 107 MAP

CLASS 250

Cast Iron Body/Bronze Trim				
Size: 2" - 24" (50 -	Size: 2" - 24" (50 - 600mm)			
2" - 12"	500psi @ 150°F			
(to 300mm)	34 bar @ 65°C			
14" - 24"	300psi @ 150°F			
(350 - 600mm)	20 bar @ 65°C			

MODEL 105 MBP CLASS 150

- Bronze Body/Bronze Trim
- Size: 2" 30" (50 750mm)
- 225psi WOG @ 150°F
- 15 bar @ 65°C

MODEL 109 MBP

CLASS 300

- Bronze Body/Bronze Trim
- Size: 2" 20" (50 500mm)
- 500psi WOG @ 150°F
- 34 bar @ 65°C

MODEL 105 MDT

CLASS 150

Carbon Steel Body/316 SS Trim

- Size: 2" 30" (50 750mm)
- 285psi WOG @ 100°F
- 19 bar @ 38°C

MODEL 109 MDT

CLASS 300

Carbon Steel Body/316 SS Trim

- Size: 2" 24" (50 600mm)
- 740psi WOG @ 100°F
- 51 bar @ 38°C

MODEL 113 DT

CLASS 600

Carbon Steel Body/316 SS Trim

- Size: 2" 10" (50 250mm)
- 1480psi WOG @ 100°F
- 102 bar @ 38°C

MODEL 117 DT

CLASS 1500

- Carbon Steel Body/316 SS Trim
- Size: 2" -24" (50 600mm)
- 3705psi WOG @ 100°F
- 255 bar @ 38°C

MODEL 105 MHT CLASS 150

316 SS Body/316 SS Trim

- Size: 2" 30" (50 750mm)
- 275psi WOG @ 100°F
- 18 bar @ 38°C

MODEL 109 MHT CLASS 300

- 316 SS Body/316 SS Trim
- Size: 2" 24" (50 600mm)
- 720psi WOG @ 100°F
- 49 bar @ 38°C

MODEL 113 HT

CLASS 600

- 316 SS Body/316 SS Trim
- Size: 2" 10" (50 250mm)
- 1440psi WOG @ 100°F
- 99 bar @ 38°C

MODEL 117 HT

CLASS 1500

- 316 SS Body/316 SS Trim
- Size: 2" -24" (50 600mm)
- 3600psi WOG @ 100°F
- 248 bar @ 38°C

NPT TYPE

MODEL 303 AP

CLASS 250

Cast Iron Body/Bronze Trim EPDM Soft Seat Option Available

- Size: ¼" − 2" (8 − 50mm)
- 200psi WOG @ 150°F
- 13 bar @ 65°C

MODEL 303 AT

CLASS 250

Cast Iron Body/316 SS Trim EPDM Soft Seat Option Available

- Size: ¼" − 2" (8 − 50mm)
- 200psi WOG @ 150°F
- 13 bar @ 65°C

MODEL 303 BP

CLASS 300

Bronze Body/Bronze Trim Optional EPDM Soft Seat Available

- Size: ¹⁄₄" − 2" (8 − 50mm)
- 400psa WOG @150°F
- 27 bar @ 65°

MODEL 303 HT

CLASS 300

316 SS Body/316 SS Trim Optional Viton® Soft Seat Available

• Size: ¼" − 2" (8 − 50mm)

- 600psi WOG @ 100°F
- 41 bar @ 38°C

* Do not use directly on discharge of reciprocating compressors.

SILENT CHECK VALVES

HOW TO ORDER

MODEL NUMBERS

These numbers describe valves furnished with standard trim. For any other type of trim refer to "BODY MATERIALS" table and "TRIM MATERIALS" table on this page. Substitute the correct letter indicating the trim materials which you require.

BODY MATERIAL	TRIM	ANSI CLASS	Compact Wafer Type	FULL FACE WAFER TYPE	GLOBE TYPE	NPT
Cast Iron	Bronze	125	91AP*			
Cast Iron	Bronze	125	92AP+			
Cast Iron	Bronze	250	93AP+			
Cast Iron	Stainless Steel	125	91AT*			
Cast Iron	Bronze	125		101MAP	105MAP	
Cast Iron	Bronze	250		103MAP	107MAP	303AP
Cast Iron	Stainless Steel	250				303AT
Bronze	Bronze	150		101MBP	105MBP	
Bronze	Bronze	300		103MBP	109MBP	303BP
Carbon Steel	Stainless Steel	150		101MDT	105MDT	
Carbon Steel	Stainless Steel	300		103MDT	109MDT	
Carbon Steel	Stainless Steel	600		131DT	113DT	
Carbon Steel	Stainless Steel	1500			117DT	
316 SS	Stainless Steel	150		101MHT	105MHT	
316 SS	Stainless Steel	300		103MHT	109MHT	303HT
316 SS	Stainless Steel	600		131HT	113HT	
316 SS	Stainless Steel	1500			117HT	

	Description	Code
	Cast Iron (Semi-Steel)	А
	Bronze, 85-5-5-5	В
	Bronze, "M" Metal	C
	Carbon Steel, Gr. WCB	D
Body	Carbon Moly, Gr. WCI	E
Material	Stainless, Type 410	F
	Stainless, Type 304	G
	Stainless, Type 316	Н
	Ductile Iron	I
	Aluminum	J
	Other - Specify	Х
	Bronze, 85-5-5-5	Р
	Bronze, "M" Metal	Q
	Stainless, Type 410	R
Trim	Stainless, Type 304	S
Material	Stainless, Type 316	Т
	Monel	U
	Carbon Steel	V
	Other - Specify	Х

Soft Seat available in EPDM, Buna-N and Viton®**. Consult Factory.

* Sizes 1¹/₂" - 6" (40 - 150mm)

+ Sizes 8" - 12" (200 - 300mm)

** DuPontTrademark

Consult factory for all special features. If no special features are required use "O" in place of "X" in the ordering and tagging number.

Ordering Information

Important! To assist you in ordering the proper product for your application, the following information is necessary: operating pressure, temperature, flow rates and/or velocity and the type of service used.

DOUBLE DISC CHECK VALVES - SURE CHECK®

The unique torsion spring arrangement on this valve forces the heel of the discs against the seat for a complete seal. It also helps close the disc on flow stoppage, minimizing flow reversal and water hammer.

Elastomer seats for each disc are molded to the body allowing complete sealing. Metal-to-metal seating is also available on request. The dual shaft design provides a positive disc stop. This feature minimizes flutter and wear at the disc hinge and maximizes the life of the valve.

All steel, stainless steel and alloy models conform to API 594 and API 6D specifications. (Also available as LOCXEND. See pages 27 & 28)

The Sure Check valves are designed for horizontal and vertical flow applications. Units are available in cast iron, ductile iron, carbon steel, stainless steel and other alloys.

SURE CHECK®

MODEL 71 CLASS 125

Cast Iron Body/Bronze Disc • Size: 2" - 54" (50 - 1350mm)

SS Discs available
 2"- 12"
 200psi @ 150°F
 (50 - 300mm)
 13 bar @ 65°C

14"-54" 150psi @ 150°F (350 - 7350mm) 10 bar @ 65°C

MODEL 71U

Ductile Iron Body/Bronze Disc U.L. & FM Approved

• Size: 4" - 12" (100 - 300mm)

- 175psi WOG @ 150°F
- 12 bar @ 65°C

MODEL 72

CLASS 150

Bronze, 2" - 54" (50 - 1350mm) Ductile Iron, Carbon Steel, Stainless Steel bodies available

- Size: 2" 56" (50 1400mm)
- 285psi WOG @ 100°F*
- 19 bar @ 38°C*

MODEL 74

CLASS 300

Bronze, Carbon Steel, Stainless Steel bodies available

- Size 2" 48" (50 1200mm)
- 740psi WOG @ 100°F*
- 51 bar @ 38°C*

CLASS 600

Carbon Steel, Stainless Steel bodies available

- Size: 2" 42" (50 1050mm)
- 1480psi @ 100°F
- 102 bar @ 38°C

MODEL 77

CLASS 900

Carbon Steel, Stainless Steel bodies available

- Size: 2" 24" (50 600mm)
- 2220psi WOG @ 100°F*
- 151 bar @ 38°C*

MODEL 78

CLASS 1500

Carbon Steel, Stainless Steel bodies available

- Size: 2" 18" (50 450mm)
- 3705psi WOG @ 100°F*
- 255 bar @ 38°C*

MODEL 79

CLASS 2500

Carbon Steel, Stainless Steel bodies available

- Size: 2" 12" (50 300mm)
- 6170psi WOG @ 100°F
- 425 bar @ 38°C

^{*} Pressure-Temperature Rating for Carbon Steel Models only

Consult factory for Stainless Steel or other materials.

DOUBLE DISC CHECK VALVES - SURE CHECK®

HOW TO ORDER

EXAMPLE

Six inch, Model 71, cast iron body, 316 SS shaft, ductile iron disc, Buna-N seat, 316 SS spring, no special features.

Model # Code Example

Consult factory for all special features. If no special features are required, use "O" in place of "X" in the ordering and tagging number.

6.0 71 A H I 3 H 0

	MATERIAL	CODE	MATERIAL	CODE	
~	Carbon Steel	D	Bronze B-62	В	
BODY	Cast Iron	А	Aluminum	J	
	316 SS	Н	Ductile Iron	I	
SHAFT	316 SS	Τ	Monel	Q	
	Carbon Steel	D	316 SS	Н	
DISC	Ductile Iron	I	Aluminum	J	
_	Bronze B-62	В	Overlay -See "Special Feature"	Х	
	Buna-N (-20° TO 250° F)	3	Monel Overlay	Q	
F I	Neoprene (-40° TO 250° F)	8	316L SS Overlay	Т	
SEAT	EPDM (-40° TO 300° F)	6	410 SS Overlay	F	
	Viton®* (-20° TO 400° F)	4	Aluminum-Bronze Overlay	K	
			Stellite #6 Overlay	V	
	Repeat Body Material code in this position for metal-to-metal seat without overlay.				
SPRING	316 SS (up to 250° F)	Н	Inconel 600 (up to 650° F)	W	
SPR	Inconel X (up to 1000° F)	Х	Monel	Q	

Ordering Information

Important: To assist you in ordering the proper product for your application, the following information is necessary: operating pressure, temperature, flow rates and/or velocity and the type of service used.

MATERIAL SPECIFICATIONS

BODY

Cast Iron ASTM A126-B (Semi- Steel) Carbon Steel ASTM A216 WCB 316 SS (CF8M) ASTM A351 Bronze (85-5-5-5) ASTM B62 Aluminum ASTM B26-52T Gr. SG 70A Ductile Iron ASTM A536

SHAFT

316 SS ASTM A479 Monel ASTM B164

DISCS

Ductile Iron ASTM A536 Bronze (85-5-5-5) ASTM B62 316 SS (CF8M) ASTM A351 Carbon Steel ASTM A216 WCB Aluminum ASTM B26-52T Gr. SG 70A

ELASTOMETER SEATS

Buna-N Neoprene EPDM Viton®

SPECIAL FEATURES

Welded Metal Overlays Micron Smooth Finished Ends Ring Joint Ends Epoxy Coated Drain Connections

Consult Factory, we can overlay with most weldable materials.

BUTTERFLY VALVES

Mueller Steam Specialty Butterfly Valves are designed for ANSI Class 125/150 flanges and in compliance with MSS-SP-25, MSS-SP-67, API-609 and MIL-V-22122C ships, Type 1, Classes A-D. MSS Butterfly Valves are also approved by the American Bureau of Shipping (ABS).

All valves are 100% factory tested to guarantee bi-direction, drop tight shutoff at full rated pressure.

The Mueller Steam Specialty Butterfly Valve offers numerous features, such as blow out proof stems, primary and secondary stem seals and multiple combinations of materials and configurations.

Our butterfly valve requires no modifications for vacuum service (Models 51, 52, 51M, 52M, 53 & 58).

Ease of repair and actuation are just a few more reasons why Mueller Steam Specialty is an industry leader.

MODEL 53

Semi-Lug Style Carbon or Stainless Steel, Seats: Buna-N, EPDM, PTFE Viton® Disc: Bronze, Ductile Iron, 316SS Stems: 316 SS. Cartridge Seat

• 17 bar @ 38°C

MODEL 51

Wafer Style, Cast Iron Body, Seats: Buna-N, EPDM, Viton®, PTFE Stems: 416 SS with Ductile Iron or Bronze Discs, 316 SS with 316 SS Discs

- Size: 2" 12" (50 300mm)
- 250psi WOG @ 100° F
- 17 bar @ 38° C

MODEL 51M

Wafer Style, Cast Iron Body, Seats: Buna-N, EPDM, Viton®*, PTFE, Stems: 416 SS with Ductile Iron or Bronze Discs, 316 SS with 316 SS Discs

- Size: 14" 24" (350 600mm)
- 150psi WOG @ 150° F
- 10 bar @ 65° C

MODEL 52

Full Lug Style, Ductile Iron Body Seats: Buna-N, EPDM, Viton®, PTFE Stems: 416 SS with Ductile Iron or Bronze Discs, 316 SS with 316 SS Discs

• Size: 2" - 12" (50 - 300mm)

- 250psi WOG @ 150°F
- 17 bar @ 65°C

MODEL 52M

Full Lug Style, Ductile Iron Body Seats: Buna-N, EPDM, Viton®, PTFE Stems: 416 SS with Ductile Iron or Bronze Discs, 316 SS with 316 SS Discs Cartridge Seat

- Size: 14" 36" (350 900mm)
- 150psi WOG @ 150°F
- 10 bar @ 65°C

MODEL 87

Wafer Style, Ductile Iron Body, 2" - 24", Seats: Buna-N, EPDM, Viton® Stems: 416 SS, 316 SS,

Disc: Aluminum Bronze, Stainless Steel

- Size: 2" 12" (50 300mm)
- 200psi WOG @ 100°F
- 14 bar @ 38°C
- Size: 14" 24" (350 600mm)
- 150psi (10 bar) WOG @ 100°F WOG @ (38°C)

MODEL 88

Lug style, Ductile Iron Body, 2" - 24"

Seats: Buna-N, EPDM, Viton® Stems: 416 SS, 316 SS Disc: Aluminum Bronze, Stainless Steel

- Size: 2" 12" (50 300mm) 200psi WOG @ 100°F
- 13 bar @ 38°C
- Size: 14"- 24" (350 600mm)
- 150psi WOG @ 100°F 10 bar @ 38°C

MODEL 58

Full Flanged, Carbon Steel or Stainless Steel Body Seats: Buna-N, EPDM, Viton®

- Stems & Disc: 316 SS, 416SS
- Size: 14" 18" (350 450mm) 150psi WOG @ 100°F
- 10 bar @ 38°C

25

HOW TO ORDER MUELLER STEAM SPECIALTY MODEL 87M, 88M BUTTERFLY VALVES

Example: 04.0-88IHH31

This is a 4" lugged body valve with a ductile iron body, 316 SS stem, 316 SS Disc, Buna-N Seat and a ten position handle

Buna-IN Seat and a ten position handle	4.0 - 88 -	IHH-3-1
SIZE:		
MODEL:		
87-Full Wafer (Replaces previous Model 65M)		
88-Full Lug (Replaces previous Model 66M)		
BODY:		
I-Ductile Iron		
STEM:		
H-316SS (Available 2" – 12" only. Specify 431 SS for 14" – 48" sizes)		
N-416SS (Available 2" – 24" only. Specify 431 SS for 30" – 48" sizes)		
P -431SS		
DISC:		
H-316SS		
B-Aluminum Bronze		
SEAT:		
3 -Buna-N		
4-Viton		
6-EPDM (Must Specify 316 SS Disc)		
7-Teflon (Buna-N Base) (Must Specify 316 SS Disc)		
OPERATOR:		

1-10-Position Lever handle (Lockable in both open and closed positions)

5-Gear Operator (Reccomended for 10" and above)

LOCXEND® - GROOVED END PRODUCTS

For fast and economical installation of piping systems, grooved end equipment is often specified. The Mueller Steam Specialty LOCXEND® family of products is the economical choice. With over 60 years of experience in flow control products, Mueller Steam Specialty has designed and produced a complete line of grooved end pipeline products. This line includes the Sure Check® check valve, the Mueller butterfly valve, pump protection products (Control-Chek® combination valve and the suction diffuser) and both "Y" and Tee strainers.

As with all Mueller products, the LOCXEND® products are 100% hydrostatically tested so that our customers are assured of consistent high quality materials and construction.

MODEL 74G

Ductile Iron Body Sure Check®, Bronze Discs, Grooved End Connections Seat: Buna-N Vulcanized Seat • Size: 3" - 6" (80 - 150mm) • 640psi WOG @ 100°F

- 44 bar @ 38°C
- 8" 12"
- 500psi WOG @ 100°F

MODEL 722G

Ductile Iron Control-Chek®, Combination Valve, Grooved End Connections Bolted Yoke Cover. with Position Indicator

• Size 2" - 12" (50 - 300mm)

(50-250mm) 12" (300mm)

2"- 10"

640psi WOG @ 100°F 44 bar @ 38°C 500psi WOG @ 100°F

34 bar @ 38°C

MODEL 89GEN

Butterfly Valve, Ductile Iron Body with Epoxy Coating Grooved End Connections, EPDM Encapsulated Ductile Iron Disc

- Size: 21/2" 12" (65 300mm)
- 175psi CWP @ 275°F
- 1.2 bar @ 135°C

MODEL 42T-G-Q

Ductlle Iron Body "Tee" Strainer, Grooved End Connections, Clamped Ductile Iron Cover

• Size: 2" - 12" (50 - 300mm)

2"- 5"	750psi WOG @ 100°F
(50 - 125mm)	51 bar @ 38°C
6"	700psi WOG @ 100°F
(150mm)	48 bar @ 38°C
8"	600psi WOG @ 100°F
(200mm)	41 bar @ 38° C
10"	500psi WOG @ 100°F
(250mm)	34 bar @ 38° C
12"	400psi WOG @ 100°F
(300mm)	27 bar @ 38°C

MODEL 1011G CLASS 150 Ductile Iron Body Suction Diffuser Grooved Inlet, Flanged Outlet, Knob Cover

through 8" x 8" (200 x 200mm) Bolted available for all sizes

- Size: 2" x 11/4" 12" x 12" (50 x 32mm - 300 x 300mm)
- 300psi WOG @ 100°F
- 20 bar @ 38°C

MODEL 758G

Ductile Iron Body "Y" Strainer Grooved End Connections Bolted Ductile Iron Cover

- Size: 2" 12" (50 300mm)
- 640psi WOG @ 100°F
- 44 bar @ 38°C

LOCXEND® - GROOVED END PRODUCTS

HOW TO ORDER

Since the LOCXEND® Sure Check® Valve can be ordered with a choice of disc and seat materials, the table shown should be used for ordering.

Example: Six inch Model 74G, with ductile iron body, bronze disc, Buna-N seat, 316 SS spring, with no special features would have the ordering number shown with the table.

	MATERIAL	CODE
вору	Ductile Iron	I
SHAFT	316 Stainless Steel	Н
	Carbon Steel	D
DISC	Ductile Iron	I
ā	Bronze B62	В
	316 Stainless Steel	Н
	Buna-N (-20 to 250° F)	3
–	Neoprene (-40 to 250° F)	8
SEAT	EPDM (-40 to 300° F)	6
0,	Teflon*(-200 to 450° F)	7
	Viton [®] * (-20 to 400° F)	4
SPRING	316 Stainless Steel	Н
	DESCRIPTION	CODE
≻	Ductile Iron, Epoxy	E
вору	Coated	
		H
STEM BOD	Coated	_
STEM	Coated 316 Stainless Steel	H
	Coated 316 Stainless Steel 416 Stainless Steel Ductile Iron, Buna-N	H N
STEM	Coated 316 Stainless Steel 416 Stainless Steel Ductile Iron, Buna-N Encapsulated Ductile Iron, EPDM	H N 3
STEM	Coated 316 Stainless Steel 416 Stainless Steel Ductile Iron, Buna-N Encapsulated Ductile Iron, EPDM Encapsulated Repeat Body code for seat Without operator	H N 3 6
STEM	Coated 316 Stainless Steel 416 Stainless Steel Ductile Iron, Buna-N Encapsulated Ductile Iron, EPDM Encapsulated Repeat Body code for seat Without operator 10 position handle	H N 3 6 E
DISC STEM	Coated 316 Stainless Steel 416 Stainless Steel Ductile Iron, Buna-N Encapsulated Ductile Iron, EPDM Encapsulated Repeat Body code for seat Without operator 10 position handle 10 position handle with memory	H N 3 6 E 0 1 2
DISC STEM	Coated 316 Stainless Steel 416 Stainless Steel Ductile Iron, Buna-N Encapsulated Ductile Iron, EPDM Encapsulated Repeat Body code for seat Without operator 10 position handle 10 position handle with	H N 3 6 E 0 1
STEM	Coated 316 Stainless Steel 416 Stainless Steel Ductile Iron, Buna-N Encapsulated Ductile Iron, EPDM Encapsulated Repeat Body code for seat Without operator 10 position handle 10 position handle with memory	H N 3 6 E 0 1 2
DISC STEM	Coated 316 Stainless Steel 416 Stainless Steel Ductile Iron, Buna-N Encapsulated Ductile Iron, EPDM Encapsulated Repeat Body code for seat Without operator 10 position handle 10 position handle with memory Infinite position handle Infinite position handle Infinite position handle	H N 3 6 E 0 1 2 3
DISC STEM	Coated 316 Stainless Steel 416 Stainless Steel Ductile Iron, Buna-N Encapsulated Ductile Iron, EPDM Encapsulated Repeat Body code for seat Without operator 10 position handle 10 position handle with memory Infinite position handle Infinite position handle with memory Gear operator Electric actuator	H N 3 6 E 0 1 2 3 4 5 6
DISC STEM	Coated 316 Stainless Steel 416 Stainless Steel Ductile Iron, Buna-N Encapsulated Ductile Iron, EPDM Encapsulated Repeat Body code for seat Without operator 10 position handle 10 position handle with memory Infinite position handle Infinite position handle Infinite position handle Electric actuator Hydraulic actuator	H N 3 6 E 0 1 2 3 4 5
DISC STEM	Coated 316 Stainless Steel 416 Stainless Steel Ductile Iron, Buna-N Encapsulated Ductile Iron, EPDM Encapsulated Repeat Body code for seat Without operator 10 position handle 10 position handle with memory Infinite position handle Infinite position handle with memory Gear operator Electric actuator	H N 3 6 E 0 1 2 3 4 5 6

Model # Code Example	6.0	74G	I H I	B3 	H 	0
Size Model No						
Body Shaft						
Disc Seat Spring]		
Special Feature						
Consult factory for all sp	pecial featu	ires. If r	no spe	ecial	tea	-

tures are required use "O" in place of "X" in the ordering and tagging number.

The LOCXEND® Butterfly Valve can be ordered with a choice of operators. The table below should be used when ordering.

Example: Two inch Model 89GEN with EPDM encapsulated disc and no operator.

Ordering information

Important: To assist you in ordering the proper LOCXEND[®] product for your application, the following information is necessary: operating pressure, temperature, flow rates and/ or velocity and the type of pump used in the installation. If special screens are required for suction diffusers, "Y" Strainers or "Tee" Strainers, the particle retention size should be specified. Advise factory when corrosive fluids are involved.

Complete Mueller Steam Specialty Representative information available at: **MuellerSteam.com**

A Watts Water Technologies Company